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Abstract

We introduce the notion of oblivious data structure, motivated by the use of data structures
in cryptography. Informally, an oblivious data structure yields no knowledge about the sequence
of operations that have been applied to it other than the final result of the operations. In
particular we define Oblivious Tree, a data structure very similar to 2-3 Tree, but with the
additional property that the only information conveyed by an Oblivious Tree is the set of values
stored at its leaves. This property is achieved through the use of randomization by the update
algorithms.

We use the Oblivious Tree data structure to solve the privacy problem for incremental digital
signatures raised by Bellare, Goldreich and Goldwasser. An incremental signing algorithm is
private if the digital signature it outputs does not give any information on the sequence of
edit operations that have been applied to produce the final document. We show how the
incremental signature scheme of Bellare, Goldreich and Goldwasser can be made achieve privacy
using Oblivious Trees instead of 2-3 Trees.

1 Introduction

We introduce the notion of oblivious data structure, motivated by the use of data structures in
cryptography. Informally, a data structure is oblivious if it yields no knowledge about the sequence
of operations that have been applied to it other than the final result of the operations. In particular
we reduce the privacy problem for incremental digital signatures raised in [1] to the data structuring
problem of designing efficient and oblivious search trees.

We design Oblivious Tree, a data structure similar to 2-3 Tree [5], but with the additional
property of being oblivious. In particular the nodes of an Oblivious Tree have bounded degree,
all leaves are at the same level, the height of the tree is logarithmic in the number of nodes and
update operations can be performed essentially at the same cost of the corresponding operations
on 2-3 Trees: Oblivious Trees can be created in O(n) time and leaves can be subsequently inserted
or deleted in O(logn) expected running time. (The expectation computed with respect to the coin
tosses of a single execution of the update algorithm.)

The rest of the paper is organized as follows. In Section 2 we give a brief introduction to
incremental cryptography and the privacy problem for incremental digital signatures. This problem
leads to the notion of oblivious search tree which is introduced in Section 3 and compared to related
data structures in Section 4. The Oblivious Tree data structure is defined and analyzed in Section 5.
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In Section 6 we describe a private incremental digital signature scheme based on the tree signature
scheme of [1] which uses the Oblivious Tree data structure to achieve privacy. Section 7 concludes
with possible extensions to this work.

2 Incremental Cryptography

The idea of incremental cryptography, as outlined in [1], is to take advantage of the knowledge
of the result of applying a cryptographic transformation (e.g. producing a digital signature) to a
document D, to compute the cryptographic transformation of a different but related document D’
quicker than performing it from scratch. The application that we have in mind is a text editor
that maintains in the background a digital signature of the document being written (see Figure 1).
Each time an edit operation f is applied to a document D, a digital signature o of D is already
available to the text editor and the incremental signing algorithm can be used to efficiently compute
a new digital signature of the modified document D’ = f(D) as a fast function of o, D and f. The
advantage of using an incremental signing algorithm is clear: as soon as we finish writing the letter,
a digital signature of it is immediately available.

There are several settings in which a considerable amount of time could be saved using an
incremental signing algorithm. For example, assume that you want to send similar documents to
different people. With an incremental signing algorithm you would sign the document just once, and
then quickly update the signature to reflect the different recipient names. Another example where
a lot of information is sent repeatedly with small differences from time to time is a surveillance
video camera which time stamps and signs each image frame before sending it. The real time
constraints of this application would make impractical to sign each image from scratch, but the
difference between successive frames is usually little, so an incremental signing algorithm can be
profitably used.

Incremental cryptography offers advantages over conventional cryptography, but it also brings
in new concerns. The are two fundamental problems that arise in the design of an incremental
digital signature scheme: the need of a new definition of security and the novel issue of privacy.

Security: The most important issue concerns the definition of security against attacks from an
outsider (the adversary) who does not know the secret key. In the standard notion of security [7]
the adversary can get signatures to messages of its choice and then must produce a signature for a
new message (see Section 6 for more details). In the incremental setting it is natural to allow the
adversary not only to obtain signatures for messages of its choice, but also to issue text modification
commands to existing documents and obtain signatures of the modified ones. In some applications
it is also prudent to assume that the adversary can tamper with the incremental signatures before
the incremental signature algorithm is applied to them. In [1] is defined a strong notion of security
(tamper proof security) against these more powerful adversaries.

Privacy: A second issue concerns the notion of privacy with respect to the intended recipient
of the signed messages. Notice that a digital signature o generated by an incremental signing
algorithm, does not depend only on the document D being signed, but it is a function of the
sequence of operations by which D has been obtained (see Figure 1). Some information on the
way the document D has been obtained as a sequence of edit operations, can be computed from
the signature of the final document produced by the incremental signing algorithm. Consider for
example the following straightforward incremental signature scheme.

A Straightforward Scheme. In order to sign a document D from scratch, just use some
standard (non incremental) signing algorithm S to compute o = S(D). If the document D is
the modification f(D’) of some document D’ of which we already know a digital signature o,
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Figure 1: Incremental Signing Editor

compute the (non incremental) signature o = S(o’ - f) and output the tuple (0,0, f, f') where f’
is some edit operation such that f'(D) = D’. In order to check that (o, 0, f, f') is a valid signature
of document D, one verifies that o' is a valid incremental signature of f'(D), o is a valid (non
incremental) signature of ¢’ - f and the document D equals f(f'(D)).

The time required to sign f(D’), when a signature of D’ is already available, is essentially
proportional to the amount of modification f applied to D’ instead of being proportional to the
size of the whole document f(D’). Therefore, the above signing algorithm is incremental. Probably
it is also secure, but it is not private: an incremental signature o of document D gives to the
recipient full information on all previous versions of the document D.

Even though there is no secrecy about the final document, you don’t want to reveal information
about intermediate documents that led to the final one. For example, suppose you are drafting a
sensitive and important letter using the above mentioned text editor with incremental signature
generation. When the final letter is complete, you certainly don’t want the intermediate versions
to be revealed through the signature.

3 Privacy and Oblivious Data Structure

In [1], Bellare, Goldreich and Goldwasser propose a digital signature method for which the signature
algorithm is incremental. We shall call the digital signature of [1] a tree signature as it works essen-
tially as follows. The document to be signed is first divided into blocks D[1], D[2], ..., D[n] which
are signed using a standard (i.e., non incremental) digital signature algorithm and the resulting
signatures stored at the leaves of a search tree. Then each internal node is tagged with a (standard)
digital signature of its children and an integer counting the number of leaves in the subtree rooted
at that node. In particular they use 2-3 Trees [5] to maintain the tree balanced. For each basic
edit operation (insertion or deletion of a sequence of blocks), the signature of the document can
be updated using the corresponding update algorithm for 2-3 Tree and recomputing the signatures
of the internal nodes that have been modified. Since 2-3 Trees have update algorithm that run
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Figure 2: 2-3 Trees

in time O(logn), the tree signature algorithm is efficient: a tree signature can be updated after a
basic edit operation in time proportional to the logarithm of the size of the whole document.

From the security point of view, the signing algorithm achieves tamper proof security (see Sec-
tion 6 for more details). However the tree scheme is not private: a tree signature gives information
on how the corresponding document has been obtained. This is not the first time that the use of
tree based signatures causes information leakage (see for example [8] where tree based signatures
are shown inappropriate as “blind signatures” in Damgaard’s payment scheme).

We make the following key observation: the information about the previous versions of the
signed document is given by the structure of the 2-3 Tree. For example if we build a 2-3 Tree
storing the sequence of “ABCE” and then insert a “D” after the “C” we get the tree shown in
Figure 2a, while if we build a 2-3 Tree storing “ACDE” and then insert a “B” after the “A” we
get the tree in Figure 2b. So, the structure of the tree gives some information about the order in
which nodes have been inserted. However, if the underlying standard signature scheme is state free,
this is the only way tree signatures leak information about the previous versions of the document.
If we replaced 2-3 Tree with a search tree data structure satisfying the property that the final
result of applying a sequence of update operations does not give any information on the sequence
of operations performed other than the set of leaves of the final tree, the tree signature scheme
would be private.

Clearly, if we want the new signing algorithm to be incremental, we have to do that without
increasing the running time of the update operations.

Therefore the privacy problem can be reduced to a purely data structuring problem: is it
possible to define a search tree with efficient insert and delete algorithms such that the final result
of applying any sequence of operations yields no information on the particular sequence other than
the final set of leaves? We call this last property obliviousness.

Notice that data structures partially solving this problem have already appeared in the literature
(see Section 4). In this paper we give a more satisfactory solution to this problem. We define a new
data structure, called Oblivious Tree, very similar to 2-3 Tree, but with the additional property
of being oblivious. In particular Oblivious Trees can be created in O(n) time and leaves can be
subsequently inserted or deleted in O(logn) expected running time, thus maintaining essentially
the same performance of 2-3 Trees.

Insert and delete are defined as randomized algorithms: when a leaf is inserted or deleted, we
make local changes to the topology of the tree based on the outcomes of a sequence of coin tosses.
Essentially, we toss a coin for each internal node to decide its degree. The crucial point is that when
the tree undergoes a local modification, we need to toss again the coins only for a small number of
nodes, in the neighborhood of the path from the root to the inserted or deleted leaf. Nevertheless,
we can prove that the final probability distribution is independent from the sequence of operations
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performed.

This data structure solves the private signature problem introduced in [1]. Perhaps, more inter-
estingly, Oblivious Trees offer advantages over other deterministic and probabilistic data structures,
even from a purely algorithmic point of view.

Algorithmic improvements: The expected height of an Oblivious Tree is log, 5 n, slightly
improving the logs n bound offered by 2-3 Tree. As far as the running time is concerned, we
prove that the insert and delete operations have O(logn) cost. The probabilistic analysis of our
algorithms is made only with respect to the coin tosses of a single operation. This is in contrast
with the use of randomization that is made in most probabilistic data structures (see Section 4).
Usually the running time of an operation is analyzed with respect to all coin tosses made during the
construction of the data structure. These include not only the coins tossed during the operation
being analyzed, but also the coin tosses of previous executions of the update algorithms. Conversely,
the running time of Oblivious Tree is analyzed without making any assumption on the coin tosses
of the previous operations applied to the tree. Even in this “worst case” probabilistic analysis, we
prove that the expected running time of the algorithms is O(logn), with negligible probability to
deviate from the expected value. This means that the running times of the operations on Oblivious
Trees can be bounded independently of each other even if the state of the data structure is known
to the user.

Applications in distributed environments: Bounding the running time of the operations
independently of each other, is of fundamental importance in certain applications. Consider a dis-
tributed environment in which the same data structure is accessed by several users. It is conceivable
that each user, although willing to accept a probabilistic estimate on the cost of the operations he
performs, wants the expected running time to be small with respect only to its own coin tosses.
The possibility of the running time cost of the operations performed by one user being strongly
influenced by those made by another one is undesirable. With our data structure the possibility
of a user being slowed down by the malicious behavior of another user accessing the same data
structure, is not present.

4 Related work on Data Structures

Oblivious Tree offers a probabilistic solution to the “uniquely represented dictionary” problem for
which a deterministic Q(n'/3) lower bound has been shown in [9]. Therefore randomization is
necessary to achieve a O(log(n)) running time for all update operations.

The idea of using randomization in performing tree operations has apparently appeared in the
data structure literature before (see [4] and [3]) in order to improve on the algorithmic aspects of
the tree operations.

Both randomized search trees ([4]) and skip lists ([3]) achieve O(logn) expected running time
for insert and delete operations. It is interesting to note that obliviousness is achieved by these
data structures, and in fact useful for the purpose of analyzing the running time of the algorithms
as follows.

In randomized search trees and skip lists, the cost of an insert or delete operation essentially
depends on the balance of the data structure. Randomization is used to keep the data structure
balanced with high probability. The balance of the data structure is independent from the sequence
of operations being applied, and in this sense the data structure is oblivious. This property is used
to prove that the expected running time for each update operation is O(logn). However, this only
works if the state of the data structure is kept hidden from the user issuing the update commands. If
the user sees the coins tossed by the update algorithms, he can easily issue a sequence of operations
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Figure 3: An Oblivious Tree

that makes the data structure unbalanced. This is because the expected O(logn) cost of each
update operation is computed over all coins tossed since the creation of the data structure, and not
just the coin tosses of the last update operation.

In a distributed environment in which some users can be malicious (as it is often the case in
cryptographic applications), we don’t want this (see last paragraph of Section 3).

The probabilistic running time analysis of Oblivious Tree is different. The expected running
time of each operation is computed only with respect to the coin tosses of the update operation
being analyzed. Therefore each operation has cost O(logn) even if the state of the data structure
and the coins tossed during the execution of the previous operations are known to the user.

In conclusion, Oblivious Tree is the first data structure in which obliviousness is achieved not as
a tool to prove other properties, but as an important property itself. However, even from a purely
algorithmic point of view, Oblivious Tree achieves better performance than other oblivious data
structures proposed in the literature, as Oblivious Tree exhibits worst case (over the previous coin
tosses) O(logn) expected running time.

5 Oblivious Tree

An Oblivious Tree is a rooted tree such that
e all leaves are at the same level,

e all internal nodes have degree at most 3, and only the nodes along the rightmost path in the
tree may have degree one.

Oblivious Trees differ from 2-3 Trees only because the nodes along the rightmost path of the tree
may have degree one. This is not essential to the data structure but it does help simplifying the
description of the update algorithms.

The degree of a node n, denoted deg(n), is the number of children of n. The size of n, denoted
size(n), is the number of leaves in the subtree rooted at m, and is equal to the sum of the sizes of
the children of n. A sequence of values b1bs ... b, is stored at the leaves of an Oblivious Tree. Each
internal node n stores size(n). This information is used to efficiently locate the leaf storing each b;.

For example, an Oblivious Tree storing the string “ABCABCDEDE” is shown in Figure 3.

Before going further in the definition of the algorithms that operate on Oblivious Trees, we
formalize the requirement for this data structure of being “oblivious”.
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Definition 1 Let M be a set of operations that act over search trees, and S be a set of algorithms
implementing them. The set of algorithms S is oblivious iff for any two sequences of operations
P, -y Pn and q1, ..., @ the following is true. If p1...p, and q1 ...q;, generate trees storing the
same set of values L, then the execution of the sequence of algorithms in S implementing p1...py
and the execution of those implementing q1 - .. g, have identical output probability distributions.

The operations we consider are the following;:

1. CrREATE(L): build a new tree storing the sequence of values L at its leaves.

2. INSERT(b,i,T): insert a new leaf node storing the value b as the i*" leaf of the tree T.
3. DELETE(i,T): remove the i'" leaf from T

The algorithms implementing the operations are probabilistic. A tree is produced first running
CREATE(L) with a (possibly empty) initial sequence of leaves L and successively applying a sequence
of modification operations INSERT and DELETE.

The algorithms are defined and analyzed in the following subsections.

We will prove obliviousness by showing that probability distribution obtained by running
CREATE(L) and then applying a sequence of modification operations, is the same as we had directly
run CREATE on the final sequence of leaves. To prove this is clearly sufficient to show that

e INSERT(b, i, CREATE(L)) outputs the same probability distribution as CREATE(L'), where L'
is the sequence obtained from L by inserting a new element b at position 4

e DELETE(i, CREATE(L)) outputs the same probability distribution as CREATE(L'), where L'
is the sequence obtained from L by removing the i’ element.

5.1 Create

Given a sequence of values L, we want to build a tree with leaves L in a randomized way, such that
it is possible to efficiently insert or delete leaves preserving that probability distribution.

CREATE(L) works as follows. The tree is built up level by level starting from the leaves. The
list of nodes at the i*? level is obtained traversing the list of nodes at level 4 + 1 from left to right
and repeatedly doing the following:

1. Choose d € {2,3} uniformly at random.
2. If there are less than d nodes left at level 4 + 1, set d equal to the number of nodes left.

3. Create a new node n at level ¢ with the next d nodes at level 7 + 1 as children and compute
the size of n as the sum of the sizes of its children.

For example, if we execute algorithm CREATE on input “ABCABCDEDE” and the outcomes
of the coins d € {2,3} are 2, 3, 2, 2, 3, 2, 3, 3 we get the tree shown in Figure 3.

It is easy to see that if a given level has k£ nodes, the next higher level will have at most [k/2]
nodes. Therefore, after O(log|L|) iteration, the list of leaves L will be reduced to a single node.
This node is the root of a tree storing at its leaves the sequence of values L.
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5.2 Insert

We want to define an insertion algorithm such that for any list of leaves L the output distribution
obtained by running the algorithms INSERT(b, i, CREATE(L)) is the same as of CREATE(L') where
L' is the list obtained from L by inserting a new element b at position 1.

INSERT(b, i, T') locates the i'" leaf of the tree using the size information associated to internal
nodes. Then, the new leaf is inserted and the nodes following it are grouped as was previously done
by CREATE but using new independent coin tosses. The way leaves are grouped will eventually
synchronize with the previous grouping, at which point we can stop, possibly with a new node to
be inserted at the previous level. Details follow.

1. Locate the i*" leaf of the tree using the size information stored at the nodes and insert a new
leaf storing the value b. Let ug,...,u, be the path from the root of the tree ug to the new
leaf 1y,.

2. Repeat the following steps for [ = h —1,h — 2,...,0. At each iteration uy,...,w; is the path
from the root of the tree to a newly inserted node ;.

(a) If u; is the last node at level I do the following.

i. If u; has degree two then go to step 3.
ii. If u; has degree three then select uniformly at random d € {2,3} and if d = 3 go to
step 3.
(b) Initialize the variable w = 1 and repeat the following steps until w = 0.
i. Let uj = u; and select uniformly at random d € {2,3}. d will be the degree of the
node following u; at level [.

ii. If d = w or v is the last node at level [, insert a new node w; right after u;, change
the parent of the last w children of u) to u;, set w = 0 and skip to step 2(b)v.

iii. Otherwise, let u; be the node following ) at level I and let ¢t = deg(u;). This node
can be found as follows. Find the largest j < [ such that w;; is not the last child
of uj, set u;;1 to the next child of u; and for £ = 5+ 1,...,1 — 1 set up; to the
first child of wuy.

iv. Change the parent of the last w children of u; to u; and set w = max(0,t +w — d).

v. Recompute the size field of the nodes along the path from v (included) to u; (ex-
cluded).

3. If [ > 0, then recompute the size information of the nodes u;, u;_1,...,uy. Otherwise, increase
the height of the tree by one creating a new root node r with children the previous root uy
and the new node uy.

5.3 Delete
The DELETE(¢, T') algorithm is similar to INSERT(b,7,T).
1. Let ug,...,up be the path from the root of the tree ug to the i” leaf wy,.

2. Repeat the following steps for I = h —1,h — 2,...,0. At each iteration uy,...,wu; is the path
from the root to a node u; to be removed.

(a) Delete w1 from the children of u;.
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(b) If u; is the last node at level [ do the following. If u; 1 was the only child of u;, continue
with the next iteration of loop 2 otherwise go to step 3.

(c) Initialize w = 1 and repeat the following steps until w = 0.

i. Set u; = w; and move w; forward. This is done analogously as in algorithm INSERT
step 2(b)iii.
ii. Let ¢ = deg(u;). If w > ¢, then change the parent of the children of u; to uj, set
w = 0 and go to step 2(c)v.
iii. Select uniformly at random d € {2, 3}.
iv. Change the parent of the first w children of u; to u; and set w equal to d — ¢t + w.

v. Recompute the size field of the nodes along the path from u; (included) to u; (ex-
cluded).

3. If [ > 0, then recompute the size information of the nodes w;, u;_1,...,uy. Otherwise, delete
the node ug and make u; the new root of the tree.

5.4 Analysis

Proposition 1 For any Oblivious Tree T storing n leaves, any 1 < n and value b, the algorithms
INSERT(b,4,T") and DELETE(i,T) have O(logn) expected running time. (Probability computed with
respect to the coin tosses of a single execution of the algorithm.) Moreover, the probability for the
running time to deviate from its expected value by a factor of « is exponentially small in o and in
the height of the tree.

We will prove the Proposition for INSERT(b,7,T"). The analysis of the DELETE algorithm is
analogous.

The only critical part of the INSERT algorithm is the loop 2b. In order to bound the number of
times that loop 2b is executed before the exit condition w = 0 is satisfied, we first need to prove
the following fact.

Lemma 1 During the execution of loop 2b the variable w may assume only values in {0,1,2}.

Proof: This is certainly true at the first iteration, as w is initialized to 1. Now, w may be set
either to 0 at step 2(b)ii, or to max(t+w — d,0) at step 2(b)iv. The only thing to be proved is that
at step 2(b)iv we always have ¢ +w — d < 2. We know that ¢ € {1,2,3} by definition of Oblivious
Tree, d € {2,3} and w € {1,2} by induction hypothesis. Notice that step 2(b)iv is executed only
if d # w. It follows that w —d < —landt+w—d <t—1<2,

We can give a probabilistic estimate of the number of times that loop 2b is repeated before
w = 0.

Lemma 2 At each iteration of loop 2b there is at least 1/4 probability to set w =0 (and therefore
exit the loop) within two iterations (the probability is over the random choices d € {2,3} at step

2(b)i).

Proof: We know from Lemma 1 that at each iteration w equals either 1 or 2. If uj is the last node
at level [ we set w = 0 at step 2(b)ii. If w = 2, then with probability 1/2 at step 2(b)i we choose
d = 2 and we set w = 0 at step 2(b)ii. If w = 1 we distinguish two cases. If ¢ = 2, with probability
1/2 we have d = 3 and we set w =t 4+ w — d = 0 at step 2(b)iv. If £ = 3, with probability 1/2, we
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have d = 2 and we set w =t + w — d = 2. At the next iteration we will set w = 0 with probability
1/2.

This already gives a polylogarithmic bound on the running time: the loop 2 is executed at most
h = O(logn) times. Each time the inner loop 2b is executed an expected constant number of times,
and each step takes at most O(logn) time. The expected total running time is O(log? n).

In fact, the running time of INSERT can be bounded more tightly. Notice that each node is
visited at most two times: the first time either at step 1 or at step 2(b)iii, and the second time
either at steps 2(b)iii and 2(b)v or at step 3. Therefore the total running time of the algorithm is
proportional to the number of nodes visited.

Let T; the number of nodes visited at level [. {1}}, is a family of random variables whose exact
value depends on both the input and the coin tosses of the algorithm. The nodes visited at level [
can be divided into two groups: the nodes visited during iterations h — 1,h — 2,...,l 4+ 1, and the
nodes visited during iteration / of the main loop.

Using Lemma 2 the number of nodes visited at iteration [ can be bounded by 2X; where X
is a random variable with geometric distribution of parameter 1/4 that depends only on the coin
tosses made during that iteration. The number of nodes visited during the previous iterations can
be bounded by T},1/2 + 1, because the only nodes at level [ visited at iteration j > [ are ancestors
of nodes visited at level j.

Notice {X;}; is a family of totally independent random variables, defined on the coin tosses of
INSERT, and independent from the input tree. The total running time is given by

Tipr

h h
Time:Zﬂ;SZ(l—i—
i=1

+ 2X7;>
i=1

Subtracting Time/2 from both sides and multiplying by 2 we get the upper bound
Time < 2h 4+ 4X,

where X = Z?‘:] X; is the sum of A totally independent random variables, all with geometric
distribution of parameter 1/4. In particular, we have E[X]| = 4h. Moreover, the probability for the
running time to deviate from its expected value by more than « is exponentially small both in «
and in h.

This concludes the running time analysis. Let’s now get to obliviousness. We already said that
the only thing to be proved is that the update algorithms preserve the probability distribution
defined by CREATE.

Proposition 2 For all L = L[1]L[2]--- L[n], i < n and b the following equalities hold between
probability distributions:

INSERT(b, i, CREATE(L)) = CREATE(L[1],...,L[i],b,L[i +1],..., L[n])

DELETE(i, CREATE(L)) = CREATE(L[1],...,L[i —1],L[i +1],..., L[n]).

Proof: (Sketch) We will prove only the first equality. The proof of the second one is analogous.
Consider how the nodes at level [ are grouped by INSERT. First of all notice that each iteration [
of the loop 2 modifies only the topology of nodes at level [. Let u;;; be the node inserted at level
I + 1. The way the nodes up to u;y1 are grouped is not changed by INSERT. The nodes after ;4

10
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Figure 4: Result of CREATE(ABCDE)

are grouped exactly in the same way as algorithm CREATE would, but using new coin tosses. This
defines the topology of the nodes up to u;. The nodes after u; are not modified.

Since the coin tosses used during the execution of the algorithms INSERT and CREATE(L) are
independent, the final result is the same as we had run CREATE directly on the modified list of
leaves.

For example if we run either CREATE(ABCDE) or INSERT(B, 1, CREATE(ACDE)), we will get
one of the trees in Figure 4 with the shown probabilities.

6 A Private Incremental Signature Scheme

In this section we define in more detail the private signature problem and show how our data
structure can be used to solve it. First we recall the definition of digital signature scheme.

Definition 2 A digital signature scheme is a triple of probabilistic polynomial time algorithms
(KGEN, S1G, VF). The key generation algorithm KGEN takes as input a security parameter 1° (i.e.
s expressed in unary) and outputs a secret key Sk and a public key Pk. The signing algorithm S1G
takes as input the secret key Sk and a message m and outputs a digital signature SiGg.(m). The
verification algorithm VF takes as input the verification key Pk, a message m and a string o, and
checks if o is a valid signature of m (i.e. VFp,(m,o0) = 1 iff 0 is a possible output of S1Gg(m)).

The standard definition of security for a digital signature scheme (security against chosen mes-
sage attack [7]) is that no probabilistic polynomial time algorithm A, capable of obtaining from

11
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S1G signatures of messages of its choice, can produce a forgery with non-negligible probability, i.e.
a valid signature for a message which has not been previously signed by SIG.

Let M be a set of text modification operations (e.g. let M = {insert(b,i),delete(i)}, where
insert(b,i) is the operation of inserting a new block b at position i of a text and delete(i) is the
operation of deleting the ith block).

The following definitions are slightly different, but equivalent to those given in [1], the main
difference being that in [1] INCSIG (see definition below) is defined as an interactive Turing machine,
while here it is defined as a probabilistic algorithm.

Definition 3 A signature scheme (KGEN, S1G, VF) is incremental with respect to a set of text mod-
ification operations M, iff there exists a probabilistic polynomial time algorithm INCSIG (the incre-
mental signing algorithm ) which on input a pair of keys (Sk, Pk) generated by KGEN, a digital sig-
nature o of a document D and an edit operation p, output a digital signature o’ = INCSIGg, p (o, p)
of the modified document p(D).

Another difference between our definition and that in [1] is that the current document is not
input to INCSIG. In fact, INCSIG cannot read the whole document because otherwise it wouldn’t
be incremental. We assume that any information about the current document required to perform
the signature update operation is contained in the description of the edit operation p.

Also the incremental signature o could be too large to be read by INCS1G. In practice, the
signature ¢ is not passed to and returned from the incremental algorithm INCSiG. Rather, o
resides in some form of memory support and is modified in place by INCSiG, which reads only
a small portion of 0. We made o an explicit parameter to INCSIG to emphasize that o resides
externally to INCS1G and a malicious user could alter the incrementable signature o before issuing
a command to INCSIG in the attempt of breaking the scheme.

As pointed out in [1], in order to define a notion of security for an incremental signature scheme
it is necessary to refer to the documents by name. The reason is that forgery is defined as the ability
to produce a signature to a new document. Therefore, we need to define of which documents we
are requesting a signature when we call the incremental signing algorithm INCS1G g, p (o, p).

We assume that the output of the signing algorithms SiG and INCSIG consists of a pair of
strings (a, 7). The first string is a document identifier, and the second one is a digital signature of
the document identified by a. We associate to each document identifier o a virtual document D,
defined as follows:

e If (@, 7) was obtained by calling S1G(D), then D, = D.
e If (o, 7) was obtained by calling INCS1G((c/, 7"),p), then D, = p(Dy).

D, is the document that the signer believes he has signed when he outputs («, 7). Therefore,
when we call the incremental algorithm INCSIG((e,T),p), this is considered as a request to sign
document p(D,,).

Definition 4 A forger is an algorithm A with oracle access to S1Gg, and INCSIGg, p, i.e., A can
use INCS1Gg, p, and S1Gg, as black bozes to obtain signatures INCSIGg, pi((ov, 7),p) and S1Gg, (D)
of messages of its choice. We stress that the incremental signatures (o, T) input to INCSIGg, pi
need not be valid signatures. We consider A to have requested signatures of D if it called algorithm
SiGg, (D) or INCS1Gsk, i, ((r, 7),p) and D = p(D,). We say that A produces a forgery if it outputs
a valid signature for a new document, i.e., a document of which it has not previously requested a
signature to either INCSIGg, p, or SIGgy.
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Security can now be defined following the standard paradigm.

Definition 5 A incremental digital signature scheme (KGEN, Sia, INCSIG, VF) is tamper proof
secure iff for any probabilistic polynomial time algorithm A, with oracle access to INCSIGg, pr and
SiGgg, the probability that A produces a forgery is negligible as a function of the security parameter
s, i.e. it is less than 1/p(s) for any polynomial p and for all s large enough. The probability is
computed with respect to the choice of (Sk, Pk) by KGEN and the coin tosses of algorithms A, S1G
and INCSIG.

We now define privacy. Informally, an incremental signature scheme is private if an adversary
cannot tell whether a signature has been obtained by running the signature algorithm from scratch
or by applying a sequence of edit operations.

Definition 6 Let (KGEN, SiG, INCSIG, VF) be an incremental signature scheme and let (Sk, Pk) a
pair of keys obtained by running KGEN(1%). Consider an adversary A operating in two stages as
follows.

e First stage: A is given the public key Pk and outputs an initial document D and a sequence
of text modification operations p1,...,Dn.

e Second stage: we flip a random bit ¢ € {0,1} and we give A an incremental digital signature of
D' = pp(pn—1(... (p2(p1(D))))) obtained either by running SiGg(D") if ¢ =0, or by running
INCS1G g, pi (INCS1G g, pie (- - - INCS1G g, 1 (S1G sk (D), p1) - - - s Pn—1),pn) if ¢ = 1. A then outputs
a bit b. A is successful if b = c.

The incremental signature scheme achieves perfect privacy iff for any (computationally un-
bounded) adversary A, the probability that A guesses ¢ is 1/2 (the probability is taken over the coin
tosses of both the incremental signature scheme and the adversary A).

A weaker notion of privacy can be defined with respect to a computationally bounded adversary.

Definition 7 Let (KGEN, S1G, INCSIG, VF) and A be as in Definition 6. The incremental signature
scheme achieve computational privacy if for any probabilistic polynomial time adversary A, the
probability that A guesses c is negligible, i.e., for any polynomial p there exists an integer sq such
that for all s > so the probability of success of A is less than 1/241/p(s). (The probability computed
over the random choice of (Sk, Pk) € KGEN(1*) and the coin tosses of SiGg,, INCSIGg, pp and A.)

We now define an incremental signature scheme which achieves both tamper proof security and
perfect privacy. The scheme is essentially the same as the tree scheme described in [1], with 2-3
Trees replaced by Oblivious Trees.

Let (G, S,V) be a standard (non incremental) signature scheme. We assume that the signature
scheme (G, S, V) satisfies the following technical condition: for any two messages mq and mg, if
there is a valid signature o of m; which is also a valid signature of ms9, then any valid signatures
of my are valid signatures of ms.

We define an incremental digital signature scheme (KGEN, SiG, INCSIG, VF) on top of (G, S, V).
The key generator KGEN is G itself. The algorithms Sig, INCSIG and VF use Sg and Vp, as
subroutines with the keys (Sk, Pk) generated by KGEN.

Algorithm S1G on input key Sk and document D, produces a pair (o, 7) where « is a binary
string and 7 is an Oblivious Tree with a label label(n) attached to each node m. The string «
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is chosen at random and it is long enough to make the probability of a collision (i.e., that two
executions of the algorithm generate the same string) negligible. Alternatively, INCS1G and Sia
can be defined as an interactive machine with an internal counter « which is incremented at each
call.

If n is a leaf node the label is a digital signature of a block of text. If n is an internal node
label(n) consists of a digital signature of the labels of the children of n concatenated with size(n)

The tree is obtained by first signing each block of the document D to get 0; = S1Gg;(D]i]). Then
the algorithm CREATE(oy,..., o,) (see Section 5) is run modified as follows. When a new internal
node n is created, the label label(n) = SiGg (1,2, l3)- size(n) is attached to the node, where I1, 1,3
are the labels of the children of n (if n has less then three children take I; = € for i > deg(n)). The
label of the root has a special form. If n is the root, then label(n) = S1Gg(l1, 12,13, @) - size(n).

The verification algorithm VF works in the obvious way. It takes as input key Pk, document D
and a signature (o, 7), and checks that all labels at the nodes of 7 are valid. A label label(n) =02
is valid iff z is the sum of the sizes of the children of n and V(msg,0) = 1 where msg is the
concatenation of the labels of the children of n and the document identifier « if n is the root node.

We now define the incremental signing algorithm INCSIG. On input (a,7) and insert(b, i),
INCSIG generates a new document identifier o/, signs the new block SiGg(h) = o, and runs the
algorithm INSERT(0, 7, 7) modified as follows. Each time a new node is visited, check if its label is
valid, and when a node is modified recompute the label of its parent.

A more detailed description of the modifications to be made to algorithm INSERT now follows.

e At step 1 use VFp, to check that the labels of the nodes
UQy vy Uj_1
are valid. In particular the root of 7 must contain a valid digital signature of (11,1, (3, ).
o At the end of step 2(b)iii check that the labels of u;;1,...,u; are valid.
o At steps 2(b)v recompute the labels of the nodes uj, ..., u; as well as their sizes.

e At step 3 recompute the labels of the nodes uy,....uy. The new label of the root node will
contain a signature of the string (Iy,ls,13, ') where o’ is the new document identifier.

Let 7’ be the new tree. The output of INCSIG is (o/, 7).

Edit operations delete(i) are treated analogously.

The above scheme meets all three requirements of being tamper proof secure, efficient and
private.

Theorem 1 If the signature scheme (G,S,V) is secure under chosen message attack, then the
incremental signature scheme (KGEN, S1G, INCS1G, VF) described above is tamper proof secure.

The proof of this theorem is essentially the same as that in [1] and is sketched in Appendix A.

Theorem 2 For any update operations, the expected running time of INCSIG is O(logn).

Proof: The running time of a document modification operation is proportional to the running time
of the corresponding insert or delete tree operation. The theorem follows from Proposition 1.
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Theorem 3 The incremental digital signature scheme INCSIG defined above achieves perfect pri-
vacy.

Proof: Let A be an adversary as described in Definition 6 and let D and p1,po,...,p, be the
initial document and the sequence of edit operations it outputs. A is given one of the two following
signatures

a0 = S1G(pn(. - - (p2(p1(D)))))
o1 = INCSIG(. .. INCSIG(S1G(D), p1) - - -, Pn)-

Let’s say, A receives o. where ¢ is chosen at random from {0,1}. We claim that the random
variables oy and o7 have identical probability distribution, and therefore o, and ¢ are independent.

For ¢ = 0,1, o, consists of a pair («,, 7.) where a, is a randomly chosen binary string, and 7. is
a labeled Oblivious Tree constructed either by running SiG or by running INcSiG. Clearly «g and
a1 have identical distribution. As regard the trees, it follows from Proposition 2 that the topology
of 79 and 7y is distributed according to the same probability, independently from the sequence of
operations used to build either tree. Finally, the label of each node in the trees is computed running
the signing algorithm Sg, with independent coin tosses. So, 79 and 7; have the same probability
distribution.

This proves that o, and ¢ are independent. Let ¢’ the final output of A. Since ¢’ is a function
of o, and the coin tosses of A only, it is independent from ¢ and the probability that ¢ = ¢ is 1/2.

7 Discussion

We have defined efficient algorithms to insert and delete nodes in trees, satisfying the property that
if two sequences of operations produce trees that have the same set of leaves, than the execution
of the algorithms corresponding to the two sequences of operations produce identical probability
distributions. We call the resulting data structure Oblivious Tree (supporting insertion and deletion
operations).

An efficient incremental digital signature scheme is defined using the Oblivious Tree data struc-
ture. The incremental signature scheme achieves tamper proof security and perfect privacy, and
thus solves an open problem raised in [1].

Perfect privacy (see Definition 6) is defined with respect to a computationally unbounded ad-
versary which chooses the sequence of edit operations to issue to the incremental signing algorithm,
but which only sees the final result of the operations. An interesting question which we leave open is
whether privacy can be achieved with respect to an adversary (possibly computationally bounded,
see Definition 7), which also gets partial information on the history of the data structure. As a
scenario in which such a stronger notion of privacy is required consider the following: three signed
copy of (different versions of) a document are sent to Alice, Bob and Charly. If a private incremen-
tal signing algorithm has been used to produce the three digital signatures, no single signature give
any information about different versions of the signed document. However, Alice and Charly could
collaborate and be able to get some information about the document sent to Bob by comparing
the signatures they received.

Oblivious algorithms for other tree operations, such as split and merge of Oblivious Trees,
can be defined following essentially the same ideas used in the definition of the insert and delete
algorithms. For example, two Oblivious Trees can be merged by concatenating their nodes level by
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level and flipping coins to choose again the degree of the nodes near the rightmost path of the first
tree. An incremental signature scheme which supports cut and paste text modification operations
can be easily defined using split and merge of Oblivious Trees, essentially in the same way we did
here for insert and delete operations.

It is clear that the definition of obliviousness for search trees can be generalized to arbitrary
data structures. An attempt to give a general definition of oblivious data structure is in Appendix
B. We believe that the applicability of the notion of oblivious data structure extends beyond the
particular problem solved here (privacy of incremental digital signatures), in particular to the area
of cryptography.
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A Proof of Security (Sketch)

Assume for contradiction that the incremental digital signature scheme
(KGEN, S1G, INCS1G, VF)

is not tamper proof secure, i.e., there exists a forger algorithm F which succeeds with probability
greater than e. We will show that the standard digital signature scheme (G,S,V) is not secure
againsts chosen message attack, contradicting our assumption.

For simplicity we assume that the document identifiers a produced by SiG and INCSIG never
repeat. This is true if the signing algorithms are defined as an interactive machine that keeps
a counter « which is incremented at every call. If Sig and INCSIG are state-free probabilistic
algorithms, the length of « is large enough to make the probability of a repetition negligible.

We use F to define an algorithm A which forges S signatures. Algorithm A is given a public
key Pk and has oracle access to Sg;,. A simulates F and answers its queries as follows.

When F ask for Sigg, (D), A simulates SIG on input D using the oracle Sg. to compute the
labels of the nodes, and aswers F with the result of SiaG.

A maintains a list M of the pairs message-signature obtained from oracle Sg;,. Before asking
the oracle for a signature of message m, A first checks if the message m is not in the list M, but
for some signature o in M, Vp(m,o) = 1. In such (m,o) is a forgery and A stop with output
(m, o). Note that if this never happen, then all messages signed by the oracle have distinct valid
signatures.

When F ask for INCSiGg, pi((r, 7),p), A first checks if 7 contains a valid signature for some
message not in M, i.e., a forgery. If so, A outputs it and stops. Otherwise A simulates INCSIG on
input ((«,7),p) using the public key Pk to verify the labels of the nodes and using oracle Sg to
sign the modified nodes, and answers F with the result of INCSIG.

Eventually, F outputs an incremental signature («, 7) of some new document D. A checks if 7
contains a valid signature for some message not in M and outputs it.

Clearly A is polynomial time. We claim that A output a forgery with probability at least e.
We do this showing that if A does not output a forgery, then also F didn’t succeed in forging the
incremental signature scheme.

Assume that A does not output a forgery. A run the simulation of F till the end. Let («,7)
the final output of F. If (o, 7) is not valid, then also F failed. So, assume that all labels in 7 are
valid, but all messages signed in 7 have already been signed by the oracle Sg, i.e., they are in M.

In particular, the root of 7 contains a signature of (1, /s, 13, ) and this message has been signed
to answer a query to F. Since this message has a special form, at some point F must have made
a query whose answer was («,7'). We will prove that D = D,,, where D, is the virtual document
associated to the document identifier «, contradicting the hypothesis that D was a new message.

For each virtual document D, we define a virtual tree 7,. The definition mimics the one of a
virtual document.

e If (, 7) was output by S1G(D), then the virtual tree of D, is 7 itself.

e If (o, 7) was output by algorithm INCSIG((a/, 7'),p) then the virtual tree of D, consists of a
tree 7, in which the new (or modified) nodes are the same as in 7 and all other nodes are as
in the corresponding subtrees of 7.

The following important properties of virtual trees can be proved by induction on the definition
of virtual documents and virtual trees.
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Lemma 3 For any document identifier «, all labels of the virtual tree 1, have been created by the
system.

Lemma 4 For any document identifier o, (o, 7,) is a valid signature of Dy, i.e.,
VFPk((aa Ta), Da) =1.

So, (a, 7o) is a valid signature of D, and («, 7) is a valid signature of D. Moreover, all messages
signed either in 7, or in 7, have been signed by the system, and therefore are in M. Since all
messages in M have distinct signatures, and the roots of the two trees 7 and 7, contains signatures
of the same message, then the two trees 7 and 7, are the same at all nodes, as it can easily proved
by induction on the level of the nodes. In particular, 7 and 7, are signatures of the same document
D= D,.

B General Definition of Oblivious Data Structure

In order to define the notion of oblivious data structure, we first need to define what a data structure
is. A common approach to the definition of data structures is that based on many-sorted algebras.
For a general introduction to this topic the reader is referred to [6]. Here we will recall the basic
definitions restricted to the case of a single sort to simplify the notation. The extension to the
many-sorted case is straightforward.

A data structure can be defined as a set of objects which can be manipulated by a given set of
operations Y. More formally, the syntaz of a data structure is specified by a signature, i.e. a set %
of function symbols with an associated arity function a:3 — IN. The meaning of the symbols in
Y is specified by a Y-algebra. A Y-algebra A is a pair (A,%4) where A is a set, called the carrier,
and X 4 contains a function f4: A" — A for each function symbol f € ¥ of arity a(f) = n.

Compound expressions, called terms, can be built up from the symbols in . For example
if a, b and f are function symbols with arity a(a) = a(b) = 0 (i.e. @ and b are constants) and
a(f) =2 (i.e. fis a binary function) we can build the term f(a,b). Given a X-algebra A = (A, X 4)
we associate to each Y-term t an element t4 € A defined by interpreting the symbols in ¢ as the
corresponding functions in 4. A congruence over A is an equivalence relation over A such that
for any f € ¥ with a(f) = n and for any aq,...,a,,b1,...,b, € A such that a; ~ b; for all i’s, we
have

fA(a1a"'aaTl) NfA(b]u"'abn)‘

For any a € A, the equivalence class of a is defined by [a] = {b | b ~ a}.

In order to define oblivious data structure, we need to extend the above notions of Y-algebra
and Y-congruence to allow the function symbols to be interpreted as probabilistic algorithms.

A probabilistic Y-algebra is a pair (A,X4) where A is a set, called the carrier, and Y4 is a
set of functions. For each function symbol f € 3 of arity a(f) = n, ¥4 contains a randomized
algorithm f4 from A™ to A. A congruence over A is an equivalence relation over A such that for
all f € ¥ with a(f) = n and for any ay,...,ay,b1,...,b, € A such that a; ~ b; for all i’s, we
have fa(aq,...,a,) ~ fa(b1,...,b,) for all possible random choices made during the computation
of fa(ay,...,an) and fa(b1,...,b,). In particular, [fa(ai,...,a,)] does not depend on the random
choices of f4.

Given probability distribution D, we denote with [D] the set of points with non zero probability.

Definition 8 Let A = (A,X4) be a probabilistic data structure and let ~ be a congruence relation
over A.
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We say that A is oblivious with respect to ~ if for any two terms t' and t? if tY ~ t4 then t
and 15124 define the same probability distribution.

For example Oblivious Trees are oblivious with respect to the equivalence relation T} ~ Ty iff
Ti and T5 have the same sequence of leaves.

The way obliviousness has been proved for our data structure in Section 5 suggests an alternative
characterization of oblivious data structures.

Theorem 4 Let A = (A,X4) be a probabilistic data structure and let ~ be a congruence relation
over A.

A is oblivious with respect to ~ iff there exists a family of probability distributions uc, one for
each equivalence class C € {[a] | a € A}, such that and for all operation f € ¥ of arity n, and
for any n-tuple (z1,...,2z,) € A" the probability distribution defined by fa(fijz,)s- - Hz,))) i5 the
same as 'u‘[fA(zl,---,Sﬂn)]'

In the Oblivious Tree case the probability distribution yuy, is defined by CREATE(L).
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