
www.manaraa.com

Oblivious Data Stru
tures: Appli
ations to CryptographyDaniele Mi

ian
io�Laboratory for Computer S
ien
eMassa
husetts Institute of Te
hnologyemail: mi

ian
�theory.l
s.mit.eduAbstra
tWe introdu
e the notion of oblivious data stru
ture, motivated by the use of data stru
turesin 
ryptography. Informally, an oblivious data stru
ture yields no knowledge about the sequen
eof operations that have been applied to it other than the �nal result of the operations. Inparti
ular we de�ne Oblivious Tree, a data stru
ture very similar to 2-3 Tree, but with theadditional property that the only information 
onveyed by an Oblivious Tree is the set of valuesstored at its leaves. This property is a
hieved through the use of randomization by the updatealgorithms.We use the Oblivious Tree data stru
ture to solve the priva
y problem for in
remental digitalsignatures raised by Bellare, Goldrei
h and Goldwasser. An in
remental signing algorithm isprivate if the digital signature it outputs does not give any information on the sequen
e ofedit operations that have been applied to produ
e the �nal do
ument. We show how thein
remental signature s
heme of Bellare, Goldrei
h and Goldwasser 
an be made a
hieve priva
yusing Oblivious Trees instead of 2-3 Trees.1 Introdu
tionWe introdu
e the notion of oblivious data stru
ture, motivated by the use of data stru
tures in
ryptography. Informally, a data stru
ture is oblivious if it yields no knowledge about the sequen
eof operations that have been applied to it other than the �nal result of the operations. In parti
ularwe redu
e the priva
y problem for in
remental digital signatures raised in [1℄ to the data stru
turingproblem of designing eÆ
ient and oblivious sear
h trees.We design Oblivious Tree, a data stru
ture similar to 2-3 Tree [5℄, but with the additionalproperty of being oblivious. In parti
ular the nodes of an Oblivious Tree have bounded degree,all leaves are at the same level, the height of the tree is logarithmi
 in the number of nodes andupdate operations 
an be performed essentially at the same 
ost of the 
orresponding operationson 2-3 Trees: Oblivious Trees 
an be 
reated in O(n) time and leaves 
an be subsequently insertedor deleted in O(log n) expe
ted running time. (The expe
tation 
omputed with respe
t to the 
ointosses of a single exe
ution of the update algorithm.)The rest of the paper is organized as follows. In Se
tion 2 we give a brief introdu
tion toin
remental 
ryptography and the priva
y problem for in
remental digital signatures. This problemleads to the notion of oblivious sear
h tree whi
h is introdu
ed in Se
tion 3 and 
ompared to relateddata stru
tures in Se
tion 4. The Oblivious Tree data stru
ture is de�ned and analyzed in Se
tion 5.�Partially supported by DARPA 
ontra
t DABT63-96-C-0018, \Se
urity for Distributed Computer Systems".Appeared on the Pro
eedings of the 29th Annual ACM Symposium on Theory of Computing (STOC '97)1



www.manaraa.com

In Se
tion 6 we des
ribe a private in
remental digital signature s
heme based on the tree signatures
heme of [1℄ whi
h uses the Oblivious Tree data stru
ture to a
hieve priva
y. Se
tion 7 
on
ludeswith possible extensions to this work.2 In
remental CryptographyThe idea of in
remental 
ryptography, as outlined in [1℄, is to take advantage of the knowledgeof the result of applying a 
ryptographi
 transformation (e.g. produ
ing a digital signature) to ado
ument D, to 
ompute the 
ryptographi
 transformation of a di�erent but related do
ument D0qui
ker than performing it from s
rat
h. The appli
ation that we have in mind is a text editorthat maintains in the ba
kground a digital signature of the do
ument being written (see Figure 1).Ea
h time an edit operation f is applied to a do
ument D, a digital signature � of D is alreadyavailable to the text editor and the in
remental signing algorithm 
an be used to eÆ
iently 
omputea new digital signature of the modi�ed do
ument D0 = f(D) as a fast fun
tion of �, D and f . Theadvantage of using an in
remental signing algorithm is 
lear: as soon as we �nish writing the letter,a digital signature of it is immediately available.There are several settings in whi
h a 
onsiderable amount of time 
ould be saved using anin
remental signing algorithm. For example, assume that you want to send similar do
uments todi�erent people. With an in
remental signing algorithm you would sign the do
ument just on
e, andthen qui
kly update the signature to re
e
t the di�erent re
ipient names. Another example wherea lot of information is sent repeatedly with small di�eren
es from time to time is a surveillan
evideo 
amera whi
h time stamps and signs ea
h image frame before sending it. The real time
onstraints of this appli
ation would make impra
ti
al to sign ea
h image from s
rat
h, but thedi�eren
e between su

essive frames is usually little, so an in
remental signing algorithm 
an bepro�tably used.In
remental 
ryptography o�ers advantages over 
onventional 
ryptography, but it also bringsin new 
on
erns. The are two fundamental problems that arise in the design of an in
rementaldigital signature s
heme: the need of a new de�nition of se
urity and the novel issue of priva
y.Se
urity: The most important issue 
on
erns the de�nition of se
urity against atta
ks from anoutsider (the adversary) who does not know the se
ret key. In the standard notion of se
urity [7℄the adversary 
an get signatures to messages of its 
hoi
e and then must produ
e a signature for anew message (see Se
tion 6 for more details). In the in
remental setting it is natural to allow theadversary not only to obtain signatures for messages of its 
hoi
e, but also to issue text modi�
ation
ommands to existing do
uments and obtain signatures of the modi�ed ones. In some appli
ationsit is also prudent to assume that the adversary 
an tamper with the in
remental signatures beforethe in
remental signature algorithm is applied to them. In [1℄ is de�ned a strong notion of se
urity(tamper proof se
urity) against these more powerful adversaries.Priva
y: A se
ond issue 
on
erns the notion of priva
y with respe
t to the intended re
ipientof the signed messages. Noti
e that a digital signature � generated by an in
remental signingalgorithm, does not depend only on the do
ument D being signed, but it is a fun
tion of thesequen
e of operations by whi
h D has been obtained (see Figure 1). Some information on theway the do
ument D has been obtained as a sequen
e of edit operations, 
an be 
omputed fromthe signature of the �nal do
ument produ
ed by the in
remental signing algorithm. Consider forexample the following straightforward in
remental signature s
heme.A Straightforward S
heme. In order to sign a do
ument D from s
rat
h, just use somestandard (non in
remental) signing algorithm S to 
ompute � = S(D). If the do
ument D isthe modi�
ation f(D0) of some do
ument D0 of whi
h we already know a digital signature �0,2



www.manaraa.com

DOCUMENT EDIT EDIT EDIT
DIGITALSIGNATURE INCREMENTALSIGNING ALGORITHM

STANDARDSIGNING ALGORITHM

Figure 1: In
remental Signing Editor
ompute the (non in
remental) signature � = S(�0 � f) and output the tuple (�; �0; f; f 0) where f 0is some edit operation su
h that f 0(D) = D0. In order to 
he
k that (�; �0; f; f 0) is a valid signatureof do
ument D, one veri�es that �0 is a valid in
remental signature of f 0(D), � is a valid (nonin
remental) signature of �0 � f and the do
ument D equals f(f 0(D)).The time required to sign f(D0), when a signature of D0 is already available, is essentiallyproportional to the amount of modi�
ation f applied to D0 instead of being proportional to thesize of the whole do
ument f(D0). Therefore, the above signing algorithm is in
remental. Probablyit is also se
ure, but it is not private: an in
remental signature � of do
ument D gives to there
ipient full information on all previous versions of the do
ument D.Even though there is no se
re
y about the �nal do
ument, you don't want to reveal informationabout intermediate do
uments that led to the �nal one. For example, suppose you are drafting asensitive and important letter using the above mentioned text editor with in
remental signaturegeneration. When the �nal letter is 
omplete, you 
ertainly don't want the intermediate versionsto be revealed through the signature.3 Priva
y and Oblivious Data Stru
tureIn [1℄, Bellare, Goldrei
h and Goldwasser propose a digital signature method for whi
h the signaturealgorithm is in
remental. We shall 
all the digital signature of [1℄ a tree signature as it works essen-tially as follows. The do
ument to be signed is �rst divided into blo
ks D[1℄;D[2℄; : : : ;D[n℄ whi
hare signed using a standard (i.e., non in
remental) digital signature algorithm and the resultingsignatures stored at the leaves of a sear
h tree. Then ea
h internal node is tagged with a (standard)digital signature of its 
hildren and an integer 
ounting the number of leaves in the subtree rootedat that node. In parti
ular they use 2-3 Trees [5℄ to maintain the tree balan
ed. For ea
h basi
edit operation (insertion or deletion of a sequen
e of blo
ks), the signature of the do
ument 
anbe updated using the 
orresponding update algorithm for 2-3 Tree and re
omputing the signaturesof the internal nodes that have been modi�ed. Sin
e 2-3 Trees have update algorithm that run3



www.manaraa.com

A B C D E A B C D E
a) b)

Figure 2: 2-3 Treesin time O(log n), the tree signature algorithm is eÆ
ient: a tree signature 
an be updated after abasi
 edit operation in time proportional to the logarithm of the size of the whole do
ument.From the se
urity point of view, the signing algorithm a
hieves tamper proof se
urity (see Se
-tion 6 for more details). However the tree s
heme is not private: a tree signature gives informationon how the 
orresponding do
ument has been obtained. This is not the �rst time that the use oftree based signatures 
auses information leakage (see for example [8℄ where tree based signaturesare shown inappropriate as \blind signatures" in Damgaard's payment s
heme).We make the following key observation: the information about the previous versions of thesigned do
ument is given by the stru
ture of the 2-3 Tree. For example if we build a 2-3 Treestoring the sequen
e of \ABCE" and then insert a \D" after the \C" we get the tree shown inFigure 2a, while if we build a 2-3 Tree storing \ACDE" and then insert a \B" after the \A" weget the tree in Figure 2b. So, the stru
ture of the tree gives some information about the order inwhi
h nodes have been inserted. However, if the underlying standard signature s
heme is state free,this is the only way tree signatures leak information about the previous versions of the do
ument.If we repla
ed 2-3 Tree with a sear
h tree data stru
ture satisfying the property that the �nalresult of applying a sequen
e of update operations does not give any information on the sequen
eof operations performed other than the set of leaves of the �nal tree, the tree signature s
hemewould be private.Clearly, if we want the new signing algorithm to be in
remental, we have to do that withoutin
reasing the running time of the update operations.Therefore the priva
y problem 
an be redu
ed to a purely data stru
turing problem: is itpossible to de�ne a sear
h tree with eÆ
ient insert and delete algorithms su
h that the �nal resultof applying any sequen
e of operations yields no information on the parti
ular sequen
e other thanthe �nal set of leaves? We 
all this last property obliviousness.Noti
e that data stru
tures partially solving this problem have already appeared in the literature(see Se
tion 4). In this paper we give a more satisfa
tory solution to this problem. We de�ne a newdata stru
ture, 
alled Oblivious Tree, very similar to 2-3 Tree, but with the additional propertyof being oblivious. In parti
ular Oblivious Trees 
an be 
reated in O(n) time and leaves 
an besubsequently inserted or deleted in O(log n) expe
ted running time, thus maintaining essentiallythe same performan
e of 2-3 Trees.Insert and delete are de�ned as randomized algorithms: when a leaf is inserted or deleted, wemake lo
al 
hanges to the topology of the tree based on the out
omes of a sequen
e of 
oin tosses.Essentially, we toss a 
oin for ea
h internal node to de
ide its degree. The 
ru
ial point is that whenthe tree undergoes a lo
al modi�
ation, we need to toss again the 
oins only for a small number ofnodes, in the neighborhood of the path from the root to the inserted or deleted leaf. Nevertheless,we 
an prove that the �nal probability distribution is independent from the sequen
e of operations4



www.manaraa.com

performed.This data stru
ture solves the private signature problem introdu
ed in [1℄. Perhaps, more inter-estingly, Oblivious Trees o�er advantages over other deterministi
 and probabilisti
 data stru
tures,even from a purely algorithmi
 point of view.Algorithmi
 improvements: The expe
ted height of an Oblivious Tree is log2:5 n, slightlyimproving the log2 n bound o�ered by 2-3 Tree. As far as the running time is 
on
erned, weprove that the insert and delete operations have O(log n) 
ost. The probabilisti
 analysis of ouralgorithms is made only with respe
t to the 
oin tosses of a single operation. This is in 
ontrastwith the use of randomization that is made in most probabilisti
 data stru
tures (see Se
tion 4).Usually the running time of an operation is analyzed with respe
t to all 
oin tosses made during the
onstru
tion of the data stru
ture. These in
lude not only the 
oins tossed during the operationbeing analyzed, but also the 
oin tosses of previous exe
utions of the update algorithms. Conversely,the running time of Oblivious Tree is analyzed without making any assumption on the 
oin tossesof the previous operations applied to the tree. Even in this \worst 
ase" probabilisti
 analysis, weprove that the expe
ted running time of the algorithms is O(log n), with negligible probability todeviate from the expe
ted value. This means that the running times of the operations on ObliviousTrees 
an be bounded independently of ea
h other even if the state of the data stru
ture is knownto the user.Appli
ations in distributed environments: Bounding the running time of the operationsindependently of ea
h other, is of fundamental importan
e in 
ertain appli
ations. Consider a dis-tributed environment in whi
h the same data stru
ture is a

essed by several users. It is 
on
eivablethat ea
h user, although willing to a

ept a probabilisti
 estimate on the 
ost of the operations heperforms, wants the expe
ted running time to be small with respe
t only to its own 
oin tosses.The possibility of the running time 
ost of the operations performed by one user being stronglyin
uen
ed by those made by another one is undesirable. With our data stru
ture the possibilityof a user being slowed down by the mali
ious behavior of another user a

essing the same datastru
ture, is not present.4 Related work on Data Stru
turesOblivious Tree o�ers a probabilisti
 solution to the \uniquely represented di
tionary" problem forwhi
h a deterministi
 
(n1=3) lower bound has been shown in [9℄. Therefore randomization isne
essary to a
hieve a O(log(n)) running time for all update operations.The idea of using randomization in performing tree operations has apparently appeared in thedata stru
ture literature before (see [4℄ and [3℄) in order to improve on the algorithmi
 aspe
ts ofthe tree operations.Both randomized sear
h trees ([4℄) and skip lists ([3℄) a
hieve O(log n) expe
ted running timefor insert and delete operations. It is interesting to note that obliviousness is a
hieved by thesedata stru
tures, and in fa
t useful for the purpose of analyzing the running time of the algorithmsas follows.In randomized sear
h trees and skip lists, the 
ost of an insert or delete operation essentiallydepends on the balan
e of the data stru
ture. Randomization is used to keep the data stru
turebalan
ed with high probability. The balan
e of the data stru
ture is independent from the sequen
eof operations being applied, and in this sense the data stru
ture is oblivious. This property is usedto prove that the expe
ted running time for ea
h update operation is O(log n). However, this onlyworks if the state of the data stru
ture is kept hidden from the user issuing the update 
ommands. Ifthe user sees the 
oins tossed by the update algorithms, he 
an easily issue a sequen
e of operations5



www.manaraa.com

A B C D EA B C D E2 2 151052 3
Figure 3: An Oblivious Treethat makes the data stru
ture unbalan
ed. This is be
ause the expe
ted O(log n) 
ost of ea
hupdate operation is 
omputed over all 
oins tossed sin
e the 
reation of the data stru
ture, and notjust the 
oin tosses of the last update operation.In a distributed environment in whi
h some users 
an be mali
ious (as it is often the 
ase in
ryptographi
 appli
ations), we don't want this (see last paragraph of Se
tion 3).The probabilisti
 running time analysis of Oblivious Tree is di�erent. The expe
ted runningtime of ea
h operation is 
omputed only with respe
t to the 
oin tosses of the update operationbeing analyzed. Therefore ea
h operation has 
ost O(log n) even if the state of the data stru
tureand the 
oins tossed during the exe
ution of the previous operations are known to the user.In 
on
lusion, Oblivious Tree is the �rst data stru
ture in whi
h obliviousness is a
hieved not asa tool to prove other properties, but as an important property itself. However, even from a purelyalgorithmi
 point of view, Oblivious Tree a
hieves better performan
e than other oblivious datastru
tures proposed in the literature, as Oblivious Tree exhibits worst 
ase (over the previous 
ointosses) O(log n) expe
ted running time.5 Oblivious TreeAn Oblivious Tree is a rooted tree su
h that� all leaves are at the same level,� all internal nodes have degree at most 3, and only the nodes along the rightmost path in thetree may have degree one.Oblivious Trees di�er from 2-3 Trees only be
ause the nodes along the rightmost path of the treemay have degree one. This is not essential to the data stru
ture but it does help simplifying thedes
ription of the update algorithms.The degree of a node n, denoted deg(n), is the number of 
hildren of n. The size of n, denotedsize(n), is the number of leaves in the subtree rooted at n, and is equal to the sum of the sizes ofthe 
hildren of n. A sequen
e of values b1b2 : : : bn is stored at the leaves of an Oblivious Tree. Ea
hinternal node n stores size(n). This information is used to eÆ
iently lo
ate the leaf storing ea
h bi.For example, an Oblivious Tree storing the string \ABCABCDEDE" is shown in Figure 3.Before going further in the de�nition of the algorithms that operate on Oblivious Trees, weformalize the requirement for this data stru
ture of being \oblivious".6



www.manaraa.com

De�nition 1 Let M be a set of operations that a
t over sear
h trees, and S be a set of algorithmsimplementing them. The set of algorithms S is oblivious i� for any two sequen
es of operationsp1, . . . , pn and q1, . . . , qm the following is true. If p1 : : : pn and q1 : : : qm generate trees storing thesame set of values L, then the exe
ution of the sequen
e of algorithms in S implementing p1 : : : pnand the exe
ution of those implementing q1 : : : qm have identi
al output probability distributions.The operations we 
onsider are the following:1. Create(L): build a new tree storing the sequen
e of values L at its leaves.2. Insert(b,i,T): insert a new leaf node storing the value b as the ith leaf of the tree T .3. Delete(i,T): remove the ith leaf from T .The algorithms implementing the operations are probabilisti
. A tree is produ
ed �rst runningCreate(L) with a (possibly empty) initial sequen
e of leaves L and su

essively applying a sequen
eof modi�
ation operations Insert and Delete.The algorithms are de�ned and analyzed in the following subse
tions.We will prove obliviousness by showing that probability distribution obtained by runningCreate(L) and then applying a sequen
e of modi�
ation operations, is the same as we had dire
tlyrun Create on the �nal sequen
e of leaves. To prove this is 
learly suÆ
ient to show that� Insert(b; i;Create(L)) outputs the same probability distribution as Create(L0), where L0is the sequen
e obtained from L by inserting a new element b at position i� Delete(i;Create(L)) outputs the same probability distribution as Create(L0), where L0is the sequen
e obtained from L by removing the ith element.5.1 CreateGiven a sequen
e of values L, we want to build a tree with leaves L in a randomized way, su
h thatit is possible to eÆ
iently insert or delete leaves preserving that probability distribution.Create(L) works as follows. The tree is built up level by level starting from the leaves. Thelist of nodes at the ith level is obtained traversing the list of nodes at level i+ 1 from left to rightand repeatedly doing the following:1. Choose d 2 f2; 3g uniformly at random.2. If there are less than d nodes left at level i+ 1, set d equal to the number of nodes left.3. Create a new node n at level i with the next d nodes at level i+ 1 as 
hildren and 
omputethe size of n as the sum of the sizes of its 
hildren.For example, if we exe
ute algorithm Create on input \ABCABCDEDE" and the out
omesof the 
oins d 2 f2; 3g are 2, 3, 2, 2, 3, 2, 3, 3 we get the tree shown in Figure 3.It is easy to see that if a given level has k nodes, the next higher level will have at most dk=2enodes. Therefore, after O(log jLj) iteration, the list of leaves L will be redu
ed to a single node.This node is the root of a tree storing at its leaves the sequen
e of values L.
7



www.manaraa.com

5.2 InsertWe want to de�ne an insertion algorithm su
h that for any list of leaves L the output distributionobtained by running the algorithms Insert(b; i;Create(L)) is the same as of Create(L0) whereL0 is the list obtained from L by inserting a new element b at position i.Insert(b; i; T ) lo
ates the ith leaf of the tree using the size information asso
iated to internalnodes. Then, the new leaf is inserted and the nodes following it are grouped as was previously doneby Create but using new independent 
oin tosses. The way leaves are grouped will eventuallysyn
hronize with the previous grouping, at whi
h point we 
an stop, possibly with a new node tobe inserted at the previous level. Details follow.1. Lo
ate the ith leaf of the tree using the size information stored at the nodes and insert a newleaf storing the value b. Let u0; : : : ; uh be the path from the root of the tree u0 to the newleaf uh.2. Repeat the following steps for l = h� 1; h� 2; : : : ; 0. At ea
h iteration u0; : : : ; ul is the pathfrom the root of the tree to a newly inserted node ul+1.(a) If ul is the last node at level l do the following.i. If ul has degree two then go to step 3.ii. If ul has degree three then sele
t uniformly at random d 2 f2; 3g and if d = 3 go tostep 3.(b) Initialize the variable w = 1 and repeat the following steps until w = 0.i. Let u0l = ul and sele
t uniformly at random d 2 f2; 3g. d will be the degree of thenode following u0l at level l.ii. If d = w or u0l is the last node at level l, insert a new node ul right after u0l, 
hangethe parent of the last w 
hildren of u0l to ul, set w = 0 and skip to step 2(b)v.iii. Otherwise, let ul be the node following u0l at level l and let t = deg(ul). This node
an be found as follows. Find the largest j < l su
h that uj+1 is not the last 
hildof uj, set uj+1 to the next 
hild of uj and for k = j + 1; : : : ; l � 1 set uk+1 to the�rst 
hild of uk.iv. Change the parent of the last w 
hildren of u0l to ul and set w = max(0; t+w � d).v. Re
ompute the size �eld of the nodes along the path from u0l (in
luded) to uj (ex-
luded).3. If l � 0, then re
ompute the size information of the nodes ul; ul�1; : : : ; u0. Otherwise, in
reasethe height of the tree by one 
reating a new root node r with 
hildren the previous root u00and the new node u0.5.3 DeleteThe Delete(i; T ) algorithm is similar to Insert(b; i; T ).1. Let u0; : : : ; uh be the path from the root of the tree u0 to the ith leaf uh.2. Repeat the following steps for l = h� 1; h� 2; : : : ; 0. At ea
h iteration u0; : : : ; ul is the pathfrom the root to a node ul to be removed.(a) Delete ul+1 from the 
hildren of ul. 8



www.manaraa.com

(b) If ul is the last node at level l do the following. If ul+1 was the only 
hild of ul, 
ontinuewith the next iteration of loop 2 otherwise go to step 3.(
) Initialize w = 1 and repeat the following steps until w = 0.i. Set u0l = ul and move ul forward. This is done analogously as in algorithm Insertstep 2(b)iii.ii. Let t = deg(ul). If w � t, then 
hange the parent of the 
hildren of ul to u0l, setw = 0 and go to step 2(
)v.iii. Sele
t uniformly at random d 2 f2; 3g.iv. Change the parent of the �rst w 
hildren of ul to u0l and set w equal to d� t+ w.v. Re
ompute the size �eld of the nodes along the path from u0l (in
luded) to uj (ex-
luded).3. If l � 0, then re
ompute the size information of the nodes ul; ul�1; : : : ; u0. Otherwise, deletethe node u0 and make u1 the new root of the tree.5.4 AnalysisProposition 1 For any Oblivious Tree T storing n leaves, any i � n and value b, the algorithmsInsert(b; i; T ) and Delete(i; T ) have O(logn) expe
ted running time. (Probability 
omputed withrespe
t to the 
oin tosses of a single exe
ution of the algorithm.) Moreover, the probability for therunning time to deviate from its expe
ted value by a fa
tor of � is exponentially small in � and inthe height of the tree.We will prove the Proposition for Insert(b; i; T ). The analysis of the Delete algorithm isanalogous.The only 
riti
al part of the Insert algorithm is the loop 2b. In order to bound the number oftimes that loop 2b is exe
uted before the exit 
ondition w = 0 is satis�ed, we �rst need to provethe following fa
t.Lemma 1 During the exe
ution of loop 2b the variable w may assume only values in f0; 1; 2g.Proof: This is 
ertainly true at the �rst iteration, as w is initialized to 1. Now, w may be seteither to 0 at step 2(b)ii, or to max(t+w�d; 0) at step 2(b)iv. The only thing to be proved is thatat step 2(b)iv we always have t+ w � d � 2. We know that t 2 f1; 2; 3g by de�nition of ObliviousTree, d 2 f2; 3g and w 2 f1; 2g by indu
tion hypothesis. Noti
e that step 2(b)iv is exe
uted onlyif d 6= w. It follows that w � d � �1 and t+ w � d � t� 1 � 2.We 
an give a probabilisti
 estimate of the number of times that loop 2b is repeated beforew = 0.Lemma 2 At ea
h iteration of loop 2b there is at least 1=4 probability to set w = 0 (and thereforeexit the loop) within two iterations (the probability is over the random 
hoi
es d 2 f2; 3g at step2(b)i).Proof: We know from Lemma 1 that at ea
h iteration w equals either 1 or 2. If u0l is the last nodeat level l we set w = 0 at step 2(b)ii. If w = 2, then with probability 1=2 at step 2(b)i we 
hoosed = 2 and we set w = 0 at step 2(b)ii. If w = 1 we distinguish two 
ases. If t = 2, with probability1=2 we have d = 3 and we set w = t+ w � d = 0 at step 2(b)iv. If t = 3, with probability 1=2, we9



www.manaraa.com

have d = 2 and we set w = t+w � d = 2. At the next iteration we will set w = 0 with probability1=2.This already gives a polylogarithmi
 bound on the running time: the loop 2 is exe
uted at mosth = O(logn) times. Ea
h time the inner loop 2b is exe
uted an expe
ted 
onstant number of times,and ea
h step takes at most O(log n) time. The expe
ted total running time is O(log2 n).In fa
t, the running time of Insert 
an be bounded more tightly. Noti
e that ea
h node isvisited at most two times: the �rst time either at step 1 or at step 2(b)iii, and the se
ond timeeither at steps 2(b)iii and 2(b)v or at step 3. Therefore the total running time of the algorithm isproportional to the number of nodes visited.Let Tl the number of nodes visited at level l. fTlgl is a family of random variables whose exa
tvalue depends on both the input and the 
oin tosses of the algorithm. The nodes visited at level l
an be divided into two groups: the nodes visited during iterations h� 1; h � 2; : : : ; l + 1, and thenodes visited during iteration l of the main loop.Using Lemma 2 the number of nodes visited at iteration l 
an be bounded by 2Xl where Xlis a random variable with geometri
 distribution of parameter 1=4 that depends only on the 
ointosses made during that iteration. The number of nodes visited during the previous iterations 
anbe bounded by Tl+1=2 + 1, be
ause the only nodes at level l visited at iteration j > l are an
estorsof nodes visited at level j.Noti
e fXlgl is a family of totally independent random variables, de�ned on the 
oin tosses ofInsert, and independent from the input tree. The total running time is given byTime = hXi=1 Ti � hXi=1�1 + Ti+12 + 2Xi�Subtra
ting Time=2 from both sides and multiplying by 2 we get the upper boundTime � 2h+ 4X;where X = Phi=1Xi is the sum of h totally independent random variables, all with geometri
distribution of parameter 1=4. In parti
ular, we have E[X℄ = 4h. Moreover, the probability for therunning time to deviate from its expe
ted value by more than � is exponentially small both in �and in h.This 
on
ludes the running time analysis. Let's now get to obliviousness. We already said thatthe only thing to be proved is that the update algorithms preserve the probability distributionde�ned by Create.Proposition 2 For all L = L[1℄L[2℄ � � �L[n℄, i � n and b the following equalities hold betweenprobability distributions:Insert(b; i;Create(L)) = Create(L[1℄; : : : ; L[i℄; b; L[i + 1℄; : : : ; L[n℄)Delete(i;Create(L)) = Create(L[1℄; : : : ; L[i� 1℄; L[i + 1℄; : : : ; L[n℄):Proof: (Sket
h) We will prove only the �rst equality. The proof of the se
ond one is analogous.Consider how the nodes at level l are grouped by Insert. First of all noti
e that ea
h iteration lof the loop 2 modi�es only the topology of nodes at level l. Let ul+1 be the node inserted at levell + 1. The way the nodes up to ul+1 are grouped is not 
hanged by Insert. The nodes after ul+110



www.manaraa.com

Prob = 1/4A B C D E

Prob = 1/8A B C D E
Prob = 1/2A B C D E

Prob = 1/8A B C D E
Figure 4: Result of Create(ABCDE)are grouped exa
tly in the same way as algorithm Create would, but using new 
oin tosses. Thisde�nes the topology of the nodes up to ul. The nodes after ul are not modi�ed.Sin
e the 
oin tosses used during the exe
ution of the algorithms Insert and Create(L) areindependent, the �nal result is the same as we had run Create dire
tly on the modi�ed list ofleaves.For example if we run either Create(ABCDE) or Insert(B; 1;Create(ACDE)), we will getone of the trees in Figure 4 with the shown probabilities.6 A Private In
remental Signature S
hemeIn this se
tion we de�ne in more detail the private signature problem and show how our datastru
ture 
an be used to solve it. First we re
all the de�nition of digital signature s
heme.De�nition 2 A digital signature s
heme is a triple of probabilisti
 polynomial time algorithms(KGen;Sig;Vf). The key generation algorithm KGen takes as input a se
urity parameter 1s (i.e.s expressed in unary) and outputs a se
ret key Sk and a publi
 key Pk. The signing algorithm Sigtakes as input the se
ret key Sk and a message m and outputs a digital signature SigSk(m). Theveri�
ation algorithm Vf takes as input the veri�
ation key Pk, a message m and a string �, and
he
ks if � is a valid signature of m (i.e. VfPk(m;�) = 1 i� � is a possible output of SigSk(m)).The standard de�nition of se
urity for a digital signature s
heme (se
urity against 
hosen mes-sage atta
k [7℄) is that no probabilisti
 polynomial time algorithm A, 
apable of obtaining from11



www.manaraa.com

Sig signatures of messages of its 
hoi
e, 
an produ
e a forgery with non-negligible probability, i.e.a valid signature for a message whi
h has not been previously signed by Sig.Let M be a set of text modi�
ation operations (e.g. let M = finsert(b; i); delete(i)g, whereinsert(b; i) is the operation of inserting a new blo
k b at position i of a text and delete(i) is theoperation of deleting the ith blo
k).The following de�nitions are slightly di�erent, but equivalent to those given in [1℄, the maindi�eren
e being that in [1℄ In
Sig (see de�nition below) is de�ned as an intera
tive Turing ma
hine,while here it is de�ned as a probabilisti
 algorithm.De�nition 3 A signature s
heme (KGen;Sig;Vf) is in
remental with respe
t to a set of text mod-i�
ation operations M, i� there exists a probabilisti
 polynomial time algorithm In
Sig (the in
re-mental signing algorithm) whi
h on input a pair of keys (Sk; Pk) generated by KGen, a digital sig-nature � of a do
ument D and an edit operation p, output a digital signature �0 = In
SigSk;Pk(�; p)of the modi�ed do
ument p(D).Another di�eren
e between our de�nition and that in [1℄ is that the 
urrent do
ument is notinput to In
Sig. In fa
t, In
Sig 
annot read the whole do
ument be
ause otherwise it wouldn'tbe in
remental. We assume that any information about the 
urrent do
ument required to performthe signature update operation is 
ontained in the des
ription of the edit operation p.Also the in
remental signature � 
ould be too large to be read by In
Sig. In pra
ti
e, thesignature � is not passed to and returned from the in
remental algorithm In
Sig. Rather, �resides in some form of memory support and is modi�ed in pla
e by In
Sig, whi
h reads onlya small portion of �. We made � an expli
it parameter to In
Sig to emphasize that � residesexternally to In
Sig and a mali
ious user 
ould alter the in
rementable signature � before issuinga 
ommand to In
Sig in the attempt of breaking the s
heme.As pointed out in [1℄, in order to de�ne a notion of se
urity for an in
remental signature s
hemeit is ne
essary to refer to the do
uments by name. The reason is that forgery is de�ned as the abilityto produ
e a signature to a new do
ument. Therefore, we need to de�ne of whi
h do
uments weare requesting a signature when we 
all the in
remental signing algorithm In
SigSk;Pk(�; p).We assume that the output of the signing algorithms Sig and In
Sig 
onsists of a pair ofstrings (�; �). The �rst string is a do
ument identi�er, and the se
ond one is a digital signature ofthe do
ument identi�ed by �. We asso
iate to ea
h do
ument identi�er � a virtual do
ument D�de�ned as follows:� If (�; �) was obtained by 
alling Sig(D), then D� = D.� If (�; �) was obtained by 
alling In
Sig((�0; � 0); p), then D� = p(D�0).D� is the do
ument that the signer believes he has signed when he outputs (�; �). Therefore,when we 
all the in
remental algorithm In
Sig((�; �); p), this is 
onsidered as a request to signdo
ument p(D�).De�nition 4 A forger is an algorithm A with ora
le a

ess to SigSk and In
SigSk;Pk, i.e., A 
anuse In
SigSk;Pk and SigSk as bla
k boxes to obtain signatures In
SigSk;Pk((�; �); p) and SigSk(D)of messages of its 
hoi
e. We stress that the in
remental signatures (�; �) input to In
SigSk;Pkneed not be valid signatures. We 
onsider A to have requested signatures of D if it 
alled algorithmSigSk(D) or In
SigSk;Pk((�; �); p) and D = p(D�). We say that A produ
es a forgery if it outputsa valid signature for a new do
ument, i.e., a do
ument of whi
h it has not previously requested asignature to either In
SigSk;Pk or SigSk. 12



www.manaraa.com

Se
urity 
an now be de�ned following the standard paradigm.De�nition 5 A in
remental digital signature s
heme (KGen;Sig; In
Sig;Vf) is tamper proofse
ure i� for any probabilisti
 polynomial time algorithm A, with ora
le a

ess to In
SigSk;Pk andSigSk, the probability that A produ
es a forgery is negligible as a fun
tion of the se
urity parameters, i.e. it is less than 1=p(s) for any polynomial p and for all s large enough. The probability is
omputed with respe
t to the 
hoi
e of (Sk; Pk) by KGen and the 
oin tosses of algorithms A, Sigand In
Sig.We now de�ne priva
y. Informally, an in
remental signature s
heme is private if an adversary
annot tell whether a signature has been obtained by running the signature algorithm from s
rat
hor by applying a sequen
e of edit operations.De�nition 6 Let (KGen;Sig; In
Sig;Vf) be an in
remental signature s
heme and let (Sk; Pk) apair of keys obtained by running KGen(1s). Consider an adversary A operating in two stages asfollows.� First stage: A is given the publi
 key Pk and outputs an initial do
ument D and a sequen
eof text modi�
ation operations p1; : : : ; pn.� Se
ond stage: we 
ip a random bit 
 2 f0; 1g and we give A an in
remental digital signature ofD0 = pn(pn�1(: : : (p2(p1(D))))) obtained either by running SigSk(D0) if 
 = 0, or by runningIn
SigSk;Pk(In
SigSk;Pk(: : : In
SigSk;Pk(SigSk(D); p1) : : : ; pn�1); pn) if 
 = 1. A then outputsa bit b. A is su

essful if b = 
.The in
remental signature s
heme a
hieves perfe
t priva
y i� for any (
omputationally un-bounded) adversary A, the probability that A guesses 
 is 1=2 (the probability is taken over the 
ointosses of both the in
remental signature s
heme and the adversary A).A weaker notion of priva
y 
an be de�ned with respe
t to a 
omputationally bounded adversary.De�nition 7 Let (KGen;Sig; In
Sig;Vf) and A be as in De�nition 6. The in
remental signatures
heme a
hieve 
omputational priva
y if for any probabilisti
 polynomial time adversary A, theprobability that A guesses 
 is negligible, i.e., for any polynomial p there exists an integer s0 su
hthat for all s > s0 the probability of su

ess of A is less than 1=2+1=p(s). (The probability 
omputedover the random 
hoi
e of (Sk; Pk) 2 KGen(1s) and the 
oin tosses of SigSk, In
SigSk;Pk and A.)We now de�ne an in
remental signature s
heme whi
h a
hieves both tamper proof se
urity andperfe
t priva
y. The s
heme is essentially the same as the tree s
heme des
ribed in [1℄, with 2-3Trees repla
ed by Oblivious Trees.Let (G;S; V ) be a standard (non in
remental) signature s
heme. We assume that the signatures
heme (G;S; V ) satis�es the following te
hni
al 
ondition: for any two messages m1 and m2, ifthere is a valid signature � of m1 whi
h is also a valid signature of m2, then any valid signaturesof m1 are valid signatures of m2.We de�ne an in
remental digital signature s
heme (KGen;Sig; In
Sig;Vf) on top of (G;S; V ).The key generator KGen is G itself. The algorithms Sig, In
Sig and Vf use SSk and VPk assubroutines with the keys (Sk; Pk) generated by KGen.Algorithm Sig on input key Sk and do
ument D, produ
es a pair (�; �) where � is a binarystring and � is an Oblivious Tree with a label label(n) atta
hed to ea
h node n. The string �13



www.manaraa.com

is 
hosen at random and it is long enough to make the probability of a 
ollision (i.e., that twoexe
utions of the algorithm generate the same string) negligible. Alternatively, In
Sig and Sig
an be de�ned as an intera
tive ma
hine with an internal 
ounter � whi
h is in
remented at ea
h
all.If n is a leaf node the label is a digital signature of a blo
k of text. If n is an internal nodelabel(n) 
onsists of a digital signature of the labels of the 
hildren of n 
on
atenated with size(n)The tree is obtained by �rst signing ea
h blo
k of the do
ument D to get �i = SigSk(D[i℄). Thenthe algorithm Create(�1; : : : ; �n) (see Se
tion 5) is run modi�ed as follows. When a new internalnode n is 
reated, the label label(n) = SigSk(l1; l2; l3)�size(n) is atta
hed to the node, where l1; l2; l3are the labels of the 
hildren of n (if n has less then three 
hildren take li = � for i > deg(n)). Thelabel of the root has a spe
ial form. If n is the root, then label(n) = SigSk(l1; l2; l3; �) � size(n).The veri�
ation algorithm Vf works in the obvious way. It takes as input key Pk, do
ument Dand a signature (�; �), and 
he
ks that all labels at the nodes of � are valid. A label label(n) = � �zis valid i� z is the sum of the sizes of the 
hildren of n and V (msg; �) = 1 where msg is the
on
atenation of the labels of the 
hildren of n and the do
ument identi�er � if n is the root node.We now de�ne the in
remental signing algorithm In
Sig. On input (�; �) and insert(b; i),In
Sig generates a new do
ument identi�er �0, signs the new blo
k SigSk(b) = �, and runs thealgorithm Insert(�; i; �) modi�ed as follows. Ea
h time a new node is visited, 
he
k if its label isvalid, and when a node is modi�ed re
ompute the label of its parent.A more detailed des
ription of the modi�
ations to be made to algorithm Insert now follows.� At step 1 use VfPk to 
he
k that the labels of the nodesu0; : : : ; ul�1are valid. In parti
ular the root of � must 
ontain a valid digital signature of (l1; l2; l3; �).� At the end of step 2(b)iii 
he
k that the labels of uj+1; : : : ; ul are valid.� At steps 2(b)v re
ompute the labels of the nodes u0l; : : : ; uj as well as their sizes.� At step 3 re
ompute the labels of the nodes ul; : : : ; u0. The new label of the root node will
ontain a signature of the string (l1; l2; l3; �0) where �0 is the new do
ument identi�er.Let � 0 be the new tree. The output of In
Sig is (�0; � 0).Edit operations delete(i) are treated analogously.The above s
heme meets all three requirements of being tamper proof se
ure, eÆ
ient andprivate.Theorem 1 If the signature s
heme (G;S; V ) is se
ure under 
hosen message atta
k, then thein
remental signature s
heme (KGen; Sig; In
Sig;Vf) des
ribed above is tamper proof se
ure.The proof of this theorem is essentially the same as that in [1℄ and is sket
hed in Appendix A.Theorem 2 For any update operations, the expe
ted running time of In
Sig is O(log n).Proof: The running time of a do
ument modi�
ation operation is proportional to the running timeof the 
orresponding insert or delete tree operation. The theorem follows from Proposition 1.
14



www.manaraa.com

Theorem 3 The in
remental digital signature s
heme In
Sig de�ned above a
hieves perfe
t pri-va
y.Proof: Let A be an adversary as des
ribed in De�nition 6 and let D and p1; p2; : : : ; pn be theinitial do
ument and the sequen
e of edit operations it outputs. A is given one of the two followingsignatures �0 = Sig(pn(: : : (p2(p1(D)))))�1 = In
Sig(: : : In
Sig(Sig(D); p1) : : : ; pn):Let's say, A re
eives �
 where 
 is 
hosen at random from f0; 1g. We 
laim that the randomvariables �0 and �1 have identi
al probability distribution, and therefore �
 and 
 are independent.For 
 = 0; 1, �
 
onsists of a pair (�
; �
) where �
 is a randomly 
hosen binary string, and �
 isa labeled Oblivious Tree 
onstru
ted either by running Sig or by running In
Sig. Clearly �0 and�1 have identi
al distribution. As regard the trees, it follows from Proposition 2 that the topologyof �0 and �1 is distributed a

ording to the same probability, independently from the sequen
e ofoperations used to build either tree. Finally, the label of ea
h node in the trees is 
omputed runningthe signing algorithm SSk with independent 
oin tosses. So, �0 and �1 have the same probabilitydistribution.This proves that �
 and 
 are independent. Let 
0 the �nal output of A. Sin
e 
0 is a fun
tionof �
 and the 
oin tosses of A only, it is independent from 
 and the probability that 
 = 
0 is 1=2.
7 Dis
ussionWe have de�ned eÆ
ient algorithms to insert and delete nodes in trees, satisfying the property thatif two sequen
es of operations produ
e trees that have the same set of leaves, than the exe
utionof the algorithms 
orresponding to the two sequen
es of operations produ
e identi
al probabilitydistributions. We 
all the resulting data stru
ture Oblivious Tree (supporting insertion and deletionoperations).An eÆ
ient in
remental digital signature s
heme is de�ned using the Oblivious Tree data stru
-ture. The in
remental signature s
heme a
hieves tamper proof se
urity and perfe
t priva
y, andthus solves an open problem raised in [1℄.Perfe
t priva
y (see De�nition 6) is de�ned with respe
t to a 
omputationally unbounded ad-versary whi
h 
hooses the sequen
e of edit operations to issue to the in
remental signing algorithm,but whi
h only sees the �nal result of the operations. An interesting question whi
h we leave open iswhether priva
y 
an be a
hieved with respe
t to an adversary (possibly 
omputationally bounded,see De�nition 7), whi
h also gets partial information on the history of the data stru
ture. As as
enario in whi
h su
h a stronger notion of priva
y is required 
onsider the following: three signed
opy of (di�erent versions of) a do
ument are sent to Ali
e, Bob and Charly. If a private in
remen-tal signing algorithm has been used to produ
e the three digital signatures, no single signature giveany information about di�erent versions of the signed do
ument. However, Ali
e and Charly 
ould
ollaborate and be able to get some information about the do
ument sent to Bob by 
omparingthe signatures they re
eived.Oblivious algorithms for other tree operations, su
h as split and merge of Oblivious Trees,
an be de�ned following essentially the same ideas used in the de�nition of the insert and deletealgorithms. For example, two Oblivious Trees 
an be merged by 
on
atenating their nodes level by15



www.manaraa.com

level and 
ipping 
oins to 
hoose again the degree of the nodes near the rightmost path of the �rsttree. An in
remental signature s
heme whi
h supports 
ut and paste text modi�
ation operations
an be easily de�ned using split and merge of Oblivious Trees, essentially in the same way we didhere for insert and delete operations.It is 
lear that the de�nition of obliviousness for sear
h trees 
an be generalized to arbitrarydata stru
tures. An attempt to give a general de�nition of oblivious data stru
ture is in AppendixB. We believe that the appli
ability of the notion of oblivious data stru
ture extends beyond theparti
ular problem solved here (priva
y of in
remental digital signatures), in parti
ular to the areaof 
ryptography.8 A
knowledgementsI would like to thank Sha� Goldwasser for suggesting the problem and for her help and en
our-agement to write this abstra
t. Thanks also to Oded Goldrei
h, Ron Rivest and Mar
 Fis
hlin foruseful dis
ussions and 
omments.Referen
es[1℄ M. Bellare, O. Goldrei
h and S. Goldwasser, \In
remental Cryptography and Appli
ation toVirus Prote
tion", Pro
. of the 27th Ann. ACM Symp. on the Theory of Computing. 1995, pp45-56.[2℄ M. Bellare, O. Goldrei
h and S. Goldwasser, \In
remental Cryptography: The 
ase of Hashingand Signing", Advan
es in 
ryptology. Pro
eedings of the 14th Ann. International Conferen
e.pp 216-233. 1994 Springer-Verlag, LNCS 839.[3℄ W. Pugh, \Skip Lists: A Probabilisti
 Alternative to Balan
ed Trees", Univ. of Maryland,Te
h. Report CS-TR-2190. 1989.[4℄ C. R. Aragon and R. G. Seidel, \Randomized Sear
h Trees", Pro
. of the 30th Ann. IEEESymp. on Foundations of Computer S
ien
e. 1983. pp 540{545.[5℄ A. Aho, J. Hop
roft and J. Ullman, \The design and analysis of 
omputer algorithms", AddisonWesley, 1974.[6℄ M. Wirsing, \Algebrai
 Spe
i�
ation", in Handbook of Theoreti
al Computer S
ien
e. Editedby J. van Leeuwen. Elsevier 1990. Vol. B, Chapter 13, pp 677-788.[7℄ S. Goldwasser, S. Mi
ali and R. L. Rivest, \A Digital Signature S
heme Se
ure Against Adap-tive Chosen-Message Atta
ks", SIAM Journal of Computing, 17(2), 1988, pp. 281{308.[8℄ B. P�tzmann and M. Waidner, \How to Break and Repair a Provably Se
ure Untra
eablePayment System", Advan
es in Cryptology: Pro
eedings of the 11th Ann. International Con-feren
e. 1991, LNCS 576, Springer-Verlag. pp. 338{350.[9℄ A. Andersson and T. Ottmann, \Faster Uniquely Represented Di
tionaries", Pro
. of the 38thAnn. IEEE Symp. on Foundations of Computer S
ien
e. 1991. pp.642{649.
16



www.manaraa.com

A Proof of Se
urity (Sket
h)Assume for 
ontradi
tion that the in
remental digital signature s
heme(KGen;Sig; In
Sig;Vf)is not tamper proof se
ure, i.e., there exists a forger algorithm F whi
h su

eeds with probabilitygreater than �. We will show that the standard digital signature s
heme (G;S; V ) is not se
ureagainsts 
hosen message atta
k, 
ontradi
ting our assumption.For simpli
ity we assume that the do
ument identi�ers � produ
ed by Sig and In
Sig neverrepeat. This is true if the signing algorithms are de�ned as an intera
tive ma
hine that keepsa 
ounter � whi
h is in
remented at every 
all. If Sig and In
Sig are state-free probabilisti
algorithms, the length of � is large enough to make the probability of a repetition negligible.We use F to de�ne an algorithm A whi
h forges S signatures. Algorithm A is given a publi
key Pk and has ora
le a

ess to SSk. A simulates F and answers its queries as follows.When F ask for SigSk(D), A simulates Sig on input D using the ora
le SSk to 
ompute thelabels of the nodes, and aswers F with the result of Sig.A maintains a list M of the pairs message-signature obtained from ora
le SSk. Before askingthe ora
le for a signature of message m, A �rst 
he
ks if the message m is not in the list M , butfor some signature � in M , VPk(m;�) = 1. In su
h (m;�) is a forgery and A stop with output(m;�). Note that if this never happen, then all messages signed by the ora
le have distin
t validsignatures.When F ask for In
SigSk;Pk((�; �); p), A �rst 
he
ks if � 
ontains a valid signature for somemessage not in M , i.e., a forgery. If so, A outputs it and stops. Otherwise A simulates In
Sig oninput ((�; �); p) using the publi
 key Pk to verify the labels of the nodes and using ora
le SSk tosign the modi�ed nodes, and answers F with the result of In
Sig.Eventually, F outputs an in
remental signature (�; �) of some new do
ument D. A 
he
ks if �
ontains a valid signature for some message not in M and outputs it.Clearly A is polynomial time. We 
laim that A output a forgery with probability at least �.We do this showing that if A does not output a forgery, then also F didn't su

eed in forging thein
remental signature s
heme.Assume that A does not output a forgery. A run the simulation of F till the end. Let (�; �)the �nal output of F . If (�; �) is not valid, then also F failed. So, assume that all labels in � arevalid, but all messages signed in � have already been signed by the ora
le SSk, i.e., they are in M .In parti
ular, the root of � 
ontains a signature of (l1; l2; l3; �) and this message has been signedto answer a query to F . Sin
e this message has a spe
ial form, at some point F must have madea query whose answer was (�; � 0). We will prove that D = D�, where D� is the virtual do
umentasso
iated to the do
ument identi�er �, 
ontradi
ting the hypothesis that D was a new message.For ea
h virtual do
ument D� we de�ne a virtual tree ��. The de�nition mimi
s the one of avirtual do
ument.� If (�; �) was output by Sig(D), then the virtual tree of D� is � itself.� If (�; �) was output by algorithm In
Sig((�0; � 0); p) then the virtual tree of D� 
onsists of atree �� in whi
h the new (or modi�ed) nodes are the same as in � and all other nodes are asin the 
orresponding subtrees of ��0 .The following important properties of virtual trees 
an be proved by indu
tion on the de�nitionof virtual do
uments and virtual trees. 17



www.manaraa.com

Lemma 3 For any do
ument identi�er �, all labels of the virtual tree �� have been 
reated by thesystem.Lemma 4 For any do
ument identi�er �, (�; ��) is a valid signature of D�, i.e.,VfPk((�; ��);D�) = 1:So, (�; ��) is a valid signature of D� and (�; �) is a valid signature of D. Moreover, all messagessigned either in �� or in � , have been signed by the system, and therefore are in M . Sin
e allmessages inM have distin
t signatures, and the roots of the two trees � and �� 
ontains signaturesof the same message, then the two trees � and �� are the same at all nodes, as it 
an easily provedby indu
tion on the level of the nodes. In parti
ular, � and �� are signatures of the same do
umentD = D�.B General De�nition of Oblivious Data Stru
tureIn order to de�ne the notion of oblivious data stru
ture, we �rst need to de�ne what a data stru
tureis. A 
ommon approa
h to the de�nition of data stru
tures is that based on many-sorted algebras.For a general introdu
tion to this topi
 the reader is referred to [6℄. Here we will re
all the basi
de�nitions restri
ted to the 
ase of a single sort to simplify the notation. The extension to themany-sorted 
ase is straightforward.A data stru
ture 
an be de�ned as a set of obje
ts whi
h 
an be manipulated by a given set ofoperations �. More formally, the syntax of a data stru
ture is spe
i�ed by a signature, i.e. a set �of fun
tion symbols with an asso
iated arity fun
tion �: � ! IN . The meaning of the symbols in� is spe
i�ed by a �-algebra. A �-algebra A is a pair (A;�A) where A is a set, 
alled the 
arrier,and �A 
ontains a fun
tion fA:An ! A for ea
h fun
tion symbol f 2 � of arity �(f) = n.Compound expressions, 
alled terms, 
an be built up from the symbols in �. For exampleif a, b and f are fun
tion symbols with arity �(a) = �(b) = 0 (i.e. a and b are 
onstants) and�(f) = 2 (i.e. f is a binary fun
tion) we 
an build the term f(a; b). Given a �-algebra A = (A;�A)we asso
iate to ea
h �-term t an element tA 2 A de�ned by interpreting the symbols in t as the
orresponding fun
tions in �A. A 
ongruen
e over A is an equivalen
e relation over A su
h thatfor any f 2 � with �(f) = n and for any a1; : : : ; an; b1; : : : ; bn 2 A su
h that ai � bi for all i's, wehave fA(a1; : : : ; an) � fA(b1; : : : ; bn):For any a 2 A, the equivalen
e 
lass of a is de�ned by [a℄ = fb j b � ag.In order to de�ne oblivious data stru
ture, we need to extend the above notions of �-algebraand �-
ongruen
e to allow the fun
tion symbols to be interpreted as probabilisti
 algorithms.A probabilisti
 �-algebra is a pair (A;�A) where A is a set, 
alled the 
arrier, and �A is aset of fun
tions. For ea
h fun
tion symbol f 2 � of arity �(f) = n, �A 
ontains a randomizedalgorithm fA from An to A. A 
ongruen
e over A is an equivalen
e relation over A su
h that forall f 2 � with �(f) = n and for any a1; : : : ; an; b1; : : : ; bn 2 A su
h that ai � bi for all i's, wehave fA(a1; : : : ; an) � fA(b1; : : : ; bn) for all possible random 
hoi
es made during the 
omputationof fA(a1; : : : ; an) and fA(b1; : : : ; bn). In parti
ular, [fA(a1; : : : ; an)℄ does not depend on the random
hoi
es of fA.Given probability distribution D, we denote with [D℄ the set of points with non zero probability.De�nition 8 Let A = (A;�A) be a probabilisti
 data stru
ture and let � be a 
ongruen
e relationover A. 18



www.manaraa.com

We say that A is oblivious with respe
t to � if for any two terms t1 and t2 if t1A � t2A then t1Aand t2A de�ne the same probability distribution.For example Oblivious Trees are oblivious with respe
t to the equivalen
e relation T1 � T2 i�T1 and T2 have the same sequen
e of leaves.The way obliviousness has been proved for our data stru
ture in Se
tion 5 suggests an alternative
hara
terization of oblivious data stru
tures.Theorem 4 Let A = (A;�A) be a probabilisti
 data stru
ture and let � be a 
ongruen
e relationover A.A is oblivious with respe
t to � i� there exists a family of probability distributions �C , one forea
h equivalen
e 
lass C 2 f[a℄ j a 2 Ag, su
h that and for all operation f 2 � of arity n, andfor any n-tuple (x1; : : : ; xn) 2 An the probability distribution de�ned by fA(�[x1℄; : : : ; �[xn℄)) is thesame as �[fA(x1;:::;xn)℄.In the Oblivious Tree 
ase the probability distribution �L is de�ned by Create(L).

19


