
www.manaraa.com

Oblivious Data Strutures: Appliations to CryptographyDaniele Miianio�Laboratory for Computer SieneMassahusetts Institute of Tehnologyemail: miian�theory.ls.mit.eduAbstratWe introdue the notion of oblivious data struture, motivated by the use of data struturesin ryptography. Informally, an oblivious data struture yields no knowledge about the sequeneof operations that have been applied to it other than the �nal result of the operations. Inpartiular we de�ne Oblivious Tree, a data struture very similar to 2-3 Tree, but with theadditional property that the only information onveyed by an Oblivious Tree is the set of valuesstored at its leaves. This property is ahieved through the use of randomization by the updatealgorithms.We use the Oblivious Tree data struture to solve the privay problem for inremental digitalsignatures raised by Bellare, Goldreih and Goldwasser. An inremental signing algorithm isprivate if the digital signature it outputs does not give any information on the sequene ofedit operations that have been applied to produe the �nal doument. We show how theinremental signature sheme of Bellare, Goldreih and Goldwasser an be made ahieve privayusing Oblivious Trees instead of 2-3 Trees.1 IntrodutionWe introdue the notion of oblivious data struture, motivated by the use of data strutures inryptography. Informally, a data struture is oblivious if it yields no knowledge about the sequeneof operations that have been applied to it other than the �nal result of the operations. In partiularwe redue the privay problem for inremental digital signatures raised in [1℄ to the data struturingproblem of designing eÆient and oblivious searh trees.We design Oblivious Tree, a data struture similar to 2-3 Tree [5℄, but with the additionalproperty of being oblivious. In partiular the nodes of an Oblivious Tree have bounded degree,all leaves are at the same level, the height of the tree is logarithmi in the number of nodes andupdate operations an be performed essentially at the same ost of the orresponding operationson 2-3 Trees: Oblivious Trees an be reated in O(n) time and leaves an be subsequently insertedor deleted in O(log n) expeted running time. (The expetation omputed with respet to the ointosses of a single exeution of the update algorithm.)The rest of the paper is organized as follows. In Setion 2 we give a brief introdution toinremental ryptography and the privay problem for inremental digital signatures. This problemleads to the notion of oblivious searh tree whih is introdued in Setion 3 and ompared to relateddata strutures in Setion 4. The Oblivious Tree data struture is de�ned and analyzed in Setion 5.�Partially supported by DARPA ontrat DABT63-96-C-0018, \Seurity for Distributed Computer Systems".Appeared on the Proeedings of the 29th Annual ACM Symposium on Theory of Computing (STOC '97)1

www.manaraa.com

In Setion 6 we desribe a private inremental digital signature sheme based on the tree signaturesheme of [1℄ whih uses the Oblivious Tree data struture to ahieve privay. Setion 7 onludeswith possible extensions to this work.2 Inremental CryptographyThe idea of inremental ryptography, as outlined in [1℄, is to take advantage of the knowledgeof the result of applying a ryptographi transformation (e.g. produing a digital signature) to adoument D, to ompute the ryptographi transformation of a di�erent but related doument D0quiker than performing it from srath. The appliation that we have in mind is a text editorthat maintains in the bakground a digital signature of the doument being written (see Figure 1).Eah time an edit operation f is applied to a doument D, a digital signature � of D is alreadyavailable to the text editor and the inremental signing algorithm an be used to eÆiently omputea new digital signature of the modi�ed doument D0 = f(D) as a fast funtion of �, D and f . Theadvantage of using an inremental signing algorithm is lear: as soon as we �nish writing the letter,a digital signature of it is immediately available.There are several settings in whih a onsiderable amount of time ould be saved using aninremental signing algorithm. For example, assume that you want to send similar douments todi�erent people. With an inremental signing algorithm you would sign the doument just one, andthen quikly update the signature to reet the di�erent reipient names. Another example wherea lot of information is sent repeatedly with small di�erenes from time to time is a surveillanevideo amera whih time stamps and signs eah image frame before sending it. The real timeonstraints of this appliation would make impratial to sign eah image from srath, but thedi�erene between suessive frames is usually little, so an inremental signing algorithm an bepro�tably used.Inremental ryptography o�ers advantages over onventional ryptography, but it also bringsin new onerns. The are two fundamental problems that arise in the design of an inrementaldigital signature sheme: the need of a new de�nition of seurity and the novel issue of privay.Seurity: The most important issue onerns the de�nition of seurity against attaks from anoutsider (the adversary) who does not know the seret key. In the standard notion of seurity [7℄the adversary an get signatures to messages of its hoie and then must produe a signature for anew message (see Setion 6 for more details). In the inremental setting it is natural to allow theadversary not only to obtain signatures for messages of its hoie, but also to issue text modi�ationommands to existing douments and obtain signatures of the modi�ed ones. In some appliationsit is also prudent to assume that the adversary an tamper with the inremental signatures beforethe inremental signature algorithm is applied to them. In [1℄ is de�ned a strong notion of seurity(tamper proof seurity) against these more powerful adversaries.Privay: A seond issue onerns the notion of privay with respet to the intended reipientof the signed messages. Notie that a digital signature � generated by an inremental signingalgorithm, does not depend only on the doument D being signed, but it is a funtion of thesequene of operations by whih D has been obtained (see Figure 1). Some information on theway the doument D has been obtained as a sequene of edit operations, an be omputed fromthe signature of the �nal doument produed by the inremental signing algorithm. Consider forexample the following straightforward inremental signature sheme.A Straightforward Sheme. In order to sign a doument D from srath, just use somestandard (non inremental) signing algorithm S to ompute � = S(D). If the doument D isthe modi�ation f(D0) of some doument D0 of whih we already know a digital signature �0,2

www.manaraa.com

DOCUMENT EDIT EDIT EDIT
DIGITALSIGNATURE INCREMENTALSIGNING ALGORITHM

STANDARDSIGNING ALGORITHM

Figure 1: Inremental Signing Editorompute the (non inremental) signature � = S(�0 � f) and output the tuple (�; �0; f; f 0) where f 0is some edit operation suh that f 0(D) = D0. In order to hek that (�; �0; f; f 0) is a valid signatureof doument D, one veri�es that �0 is a valid inremental signature of f 0(D), � is a valid (noninremental) signature of �0 � f and the doument D equals f(f 0(D)).The time required to sign f(D0), when a signature of D0 is already available, is essentiallyproportional to the amount of modi�ation f applied to D0 instead of being proportional to thesize of the whole doument f(D0). Therefore, the above signing algorithm is inremental. Probablyit is also seure, but it is not private: an inremental signature � of doument D gives to thereipient full information on all previous versions of the doument D.Even though there is no serey about the �nal doument, you don't want to reveal informationabout intermediate douments that led to the �nal one. For example, suppose you are drafting asensitive and important letter using the above mentioned text editor with inremental signaturegeneration. When the �nal letter is omplete, you ertainly don't want the intermediate versionsto be revealed through the signature.3 Privay and Oblivious Data StrutureIn [1℄, Bellare, Goldreih and Goldwasser propose a digital signature method for whih the signaturealgorithm is inremental. We shall all the digital signature of [1℄ a tree signature as it works essen-tially as follows. The doument to be signed is �rst divided into bloks D[1℄;D[2℄; : : : ;D[n℄ whihare signed using a standard (i.e., non inremental) digital signature algorithm and the resultingsignatures stored at the leaves of a searh tree. Then eah internal node is tagged with a (standard)digital signature of its hildren and an integer ounting the number of leaves in the subtree rootedat that node. In partiular they use 2-3 Trees [5℄ to maintain the tree balaned. For eah basiedit operation (insertion or deletion of a sequene of bloks), the signature of the doument anbe updated using the orresponding update algorithm for 2-3 Tree and reomputing the signaturesof the internal nodes that have been modi�ed. Sine 2-3 Trees have update algorithm that run3

www.manaraa.com

A B C D E A B C D E
a) b)

Figure 2: 2-3 Treesin time O(log n), the tree signature algorithm is eÆient: a tree signature an be updated after abasi edit operation in time proportional to the logarithm of the size of the whole doument.From the seurity point of view, the signing algorithm ahieves tamper proof seurity (see Se-tion 6 for more details). However the tree sheme is not private: a tree signature gives informationon how the orresponding doument has been obtained. This is not the �rst time that the use oftree based signatures auses information leakage (see for example [8℄ where tree based signaturesare shown inappropriate as \blind signatures" in Damgaard's payment sheme).We make the following key observation: the information about the previous versions of thesigned doument is given by the struture of the 2-3 Tree. For example if we build a 2-3 Treestoring the sequene of \ABCE" and then insert a \D" after the \C" we get the tree shown inFigure 2a, while if we build a 2-3 Tree storing \ACDE" and then insert a \B" after the \A" weget the tree in Figure 2b. So, the struture of the tree gives some information about the order inwhih nodes have been inserted. However, if the underlying standard signature sheme is state free,this is the only way tree signatures leak information about the previous versions of the doument.If we replaed 2-3 Tree with a searh tree data struture satisfying the property that the �nalresult of applying a sequene of update operations does not give any information on the sequeneof operations performed other than the set of leaves of the �nal tree, the tree signature shemewould be private.Clearly, if we want the new signing algorithm to be inremental, we have to do that withoutinreasing the running time of the update operations.Therefore the privay problem an be redued to a purely data struturing problem: is itpossible to de�ne a searh tree with eÆient insert and delete algorithms suh that the �nal resultof applying any sequene of operations yields no information on the partiular sequene other thanthe �nal set of leaves? We all this last property obliviousness.Notie that data strutures partially solving this problem have already appeared in the literature(see Setion 4). In this paper we give a more satisfatory solution to this problem. We de�ne a newdata struture, alled Oblivious Tree, very similar to 2-3 Tree, but with the additional propertyof being oblivious. In partiular Oblivious Trees an be reated in O(n) time and leaves an besubsequently inserted or deleted in O(log n) expeted running time, thus maintaining essentiallythe same performane of 2-3 Trees.Insert and delete are de�ned as randomized algorithms: when a leaf is inserted or deleted, wemake loal hanges to the topology of the tree based on the outomes of a sequene of oin tosses.Essentially, we toss a oin for eah internal node to deide its degree. The ruial point is that whenthe tree undergoes a loal modi�ation, we need to toss again the oins only for a small number ofnodes, in the neighborhood of the path from the root to the inserted or deleted leaf. Nevertheless,we an prove that the �nal probability distribution is independent from the sequene of operations4

www.manaraa.com

performed.This data struture solves the private signature problem introdued in [1℄. Perhaps, more inter-estingly, Oblivious Trees o�er advantages over other deterministi and probabilisti data strutures,even from a purely algorithmi point of view.Algorithmi improvements: The expeted height of an Oblivious Tree is log2:5 n, slightlyimproving the log2 n bound o�ered by 2-3 Tree. As far as the running time is onerned, weprove that the insert and delete operations have O(log n) ost. The probabilisti analysis of ouralgorithms is made only with respet to the oin tosses of a single operation. This is in ontrastwith the use of randomization that is made in most probabilisti data strutures (see Setion 4).Usually the running time of an operation is analyzed with respet to all oin tosses made during theonstrution of the data struture. These inlude not only the oins tossed during the operationbeing analyzed, but also the oin tosses of previous exeutions of the update algorithms. Conversely,the running time of Oblivious Tree is analyzed without making any assumption on the oin tossesof the previous operations applied to the tree. Even in this \worst ase" probabilisti analysis, weprove that the expeted running time of the algorithms is O(log n), with negligible probability todeviate from the expeted value. This means that the running times of the operations on ObliviousTrees an be bounded independently of eah other even if the state of the data struture is knownto the user.Appliations in distributed environments: Bounding the running time of the operationsindependently of eah other, is of fundamental importane in ertain appliations. Consider a dis-tributed environment in whih the same data struture is aessed by several users. It is oneivablethat eah user, although willing to aept a probabilisti estimate on the ost of the operations heperforms, wants the expeted running time to be small with respet only to its own oin tosses.The possibility of the running time ost of the operations performed by one user being stronglyinuened by those made by another one is undesirable. With our data struture the possibilityof a user being slowed down by the maliious behavior of another user aessing the same datastruture, is not present.4 Related work on Data StruturesOblivious Tree o�ers a probabilisti solution to the \uniquely represented ditionary" problem forwhih a deterministi
(n1=3) lower bound has been shown in [9℄. Therefore randomization isneessary to ahieve a O(log(n)) running time for all update operations.The idea of using randomization in performing tree operations has apparently appeared in thedata struture literature before (see [4℄ and [3℄) in order to improve on the algorithmi aspets ofthe tree operations.Both randomized searh trees ([4℄) and skip lists ([3℄) ahieve O(log n) expeted running timefor insert and delete operations. It is interesting to note that obliviousness is ahieved by thesedata strutures, and in fat useful for the purpose of analyzing the running time of the algorithmsas follows.In randomized searh trees and skip lists, the ost of an insert or delete operation essentiallydepends on the balane of the data struture. Randomization is used to keep the data struturebalaned with high probability. The balane of the data struture is independent from the sequeneof operations being applied, and in this sense the data struture is oblivious. This property is usedto prove that the expeted running time for eah update operation is O(log n). However, this onlyworks if the state of the data struture is kept hidden from the user issuing the update ommands. Ifthe user sees the oins tossed by the update algorithms, he an easily issue a sequene of operations5

www.manaraa.com

A B C D EA B C D E2 2 151052 3
Figure 3: An Oblivious Treethat makes the data struture unbalaned. This is beause the expeted O(log n) ost of eahupdate operation is omputed over all oins tossed sine the reation of the data struture, and notjust the oin tosses of the last update operation.In a distributed environment in whih some users an be maliious (as it is often the ase inryptographi appliations), we don't want this (see last paragraph of Setion 3).The probabilisti running time analysis of Oblivious Tree is di�erent. The expeted runningtime of eah operation is omputed only with respet to the oin tosses of the update operationbeing analyzed. Therefore eah operation has ost O(log n) even if the state of the data strutureand the oins tossed during the exeution of the previous operations are known to the user.In onlusion, Oblivious Tree is the �rst data struture in whih obliviousness is ahieved not asa tool to prove other properties, but as an important property itself. However, even from a purelyalgorithmi point of view, Oblivious Tree ahieves better performane than other oblivious datastrutures proposed in the literature, as Oblivious Tree exhibits worst ase (over the previous ointosses) O(log n) expeted running time.5 Oblivious TreeAn Oblivious Tree is a rooted tree suh that� all leaves are at the same level,� all internal nodes have degree at most 3, and only the nodes along the rightmost path in thetree may have degree one.Oblivious Trees di�er from 2-3 Trees only beause the nodes along the rightmost path of the treemay have degree one. This is not essential to the data struture but it does help simplifying thedesription of the update algorithms.The degree of a node n, denoted deg(n), is the number of hildren of n. The size of n, denotedsize(n), is the number of leaves in the subtree rooted at n, and is equal to the sum of the sizes ofthe hildren of n. A sequene of values b1b2 : : : bn is stored at the leaves of an Oblivious Tree. Eahinternal node n stores size(n). This information is used to eÆiently loate the leaf storing eah bi.For example, an Oblivious Tree storing the string \ABCABCDEDE" is shown in Figure 3.Before going further in the de�nition of the algorithms that operate on Oblivious Trees, weformalize the requirement for this data struture of being \oblivious".6

www.manaraa.com

De�nition 1 Let M be a set of operations that at over searh trees, and S be a set of algorithmsimplementing them. The set of algorithms S is oblivious i� for any two sequenes of operationsp1, . . . , pn and q1, . . . , qm the following is true. If p1 : : : pn and q1 : : : qm generate trees storing thesame set of values L, then the exeution of the sequene of algorithms in S implementing p1 : : : pnand the exeution of those implementing q1 : : : qm have idential output probability distributions.The operations we onsider are the following:1. Create(L): build a new tree storing the sequene of values L at its leaves.2. Insert(b,i,T): insert a new leaf node storing the value b as the ith leaf of the tree T .3. Delete(i,T): remove the ith leaf from T .The algorithms implementing the operations are probabilisti. A tree is produed �rst runningCreate(L) with a (possibly empty) initial sequene of leaves L and suessively applying a sequeneof modi�ation operations Insert and Delete.The algorithms are de�ned and analyzed in the following subsetions.We will prove obliviousness by showing that probability distribution obtained by runningCreate(L) and then applying a sequene of modi�ation operations, is the same as we had diretlyrun Create on the �nal sequene of leaves. To prove this is learly suÆient to show that� Insert(b; i;Create(L)) outputs the same probability distribution as Create(L0), where L0is the sequene obtained from L by inserting a new element b at position i� Delete(i;Create(L)) outputs the same probability distribution as Create(L0), where L0is the sequene obtained from L by removing the ith element.5.1 CreateGiven a sequene of values L, we want to build a tree with leaves L in a randomized way, suh thatit is possible to eÆiently insert or delete leaves preserving that probability distribution.Create(L) works as follows. The tree is built up level by level starting from the leaves. Thelist of nodes at the ith level is obtained traversing the list of nodes at level i+ 1 from left to rightand repeatedly doing the following:1. Choose d 2 f2; 3g uniformly at random.2. If there are less than d nodes left at level i+ 1, set d equal to the number of nodes left.3. Create a new node n at level i with the next d nodes at level i+ 1 as hildren and omputethe size of n as the sum of the sizes of its hildren.For example, if we exeute algorithm Create on input \ABCABCDEDE" and the outomesof the oins d 2 f2; 3g are 2, 3, 2, 2, 3, 2, 3, 3 we get the tree shown in Figure 3.It is easy to see that if a given level has k nodes, the next higher level will have at most dk=2enodes. Therefore, after O(log jLj) iteration, the list of leaves L will be redued to a single node.This node is the root of a tree storing at its leaves the sequene of values L.
7

www.manaraa.com

5.2 InsertWe want to de�ne an insertion algorithm suh that for any list of leaves L the output distributionobtained by running the algorithms Insert(b; i;Create(L)) is the same as of Create(L0) whereL0 is the list obtained from L by inserting a new element b at position i.Insert(b; i; T) loates the ith leaf of the tree using the size information assoiated to internalnodes. Then, the new leaf is inserted and the nodes following it are grouped as was previously doneby Create but using new independent oin tosses. The way leaves are grouped will eventuallysynhronize with the previous grouping, at whih point we an stop, possibly with a new node tobe inserted at the previous level. Details follow.1. Loate the ith leaf of the tree using the size information stored at the nodes and insert a newleaf storing the value b. Let u0; : : : ; uh be the path from the root of the tree u0 to the newleaf uh.2. Repeat the following steps for l = h� 1; h� 2; : : : ; 0. At eah iteration u0; : : : ; ul is the pathfrom the root of the tree to a newly inserted node ul+1.(a) If ul is the last node at level l do the following.i. If ul has degree two then go to step 3.ii. If ul has degree three then selet uniformly at random d 2 f2; 3g and if d = 3 go tostep 3.(b) Initialize the variable w = 1 and repeat the following steps until w = 0.i. Let u0l = ul and selet uniformly at random d 2 f2; 3g. d will be the degree of thenode following u0l at level l.ii. If d = w or u0l is the last node at level l, insert a new node ul right after u0l, hangethe parent of the last w hildren of u0l to ul, set w = 0 and skip to step 2(b)v.iii. Otherwise, let ul be the node following u0l at level l and let t = deg(ul). This nodean be found as follows. Find the largest j < l suh that uj+1 is not the last hildof uj, set uj+1 to the next hild of uj and for k = j + 1; : : : ; l � 1 set uk+1 to the�rst hild of uk.iv. Change the parent of the last w hildren of u0l to ul and set w = max(0; t+w � d).v. Reompute the size �eld of the nodes along the path from u0l (inluded) to uj (ex-luded).3. If l � 0, then reompute the size information of the nodes ul; ul�1; : : : ; u0. Otherwise, inreasethe height of the tree by one reating a new root node r with hildren the previous root u00and the new node u0.5.3 DeleteThe Delete(i; T) algorithm is similar to Insert(b; i; T).1. Let u0; : : : ; uh be the path from the root of the tree u0 to the ith leaf uh.2. Repeat the following steps for l = h� 1; h� 2; : : : ; 0. At eah iteration u0; : : : ; ul is the pathfrom the root to a node ul to be removed.(a) Delete ul+1 from the hildren of ul. 8

www.manaraa.com

(b) If ul is the last node at level l do the following. If ul+1 was the only hild of ul, ontinuewith the next iteration of loop 2 otherwise go to step 3.() Initialize w = 1 and repeat the following steps until w = 0.i. Set u0l = ul and move ul forward. This is done analogously as in algorithm Insertstep 2(b)iii.ii. Let t = deg(ul). If w � t, then hange the parent of the hildren of ul to u0l, setw = 0 and go to step 2()v.iii. Selet uniformly at random d 2 f2; 3g.iv. Change the parent of the �rst w hildren of ul to u0l and set w equal to d� t+ w.v. Reompute the size �eld of the nodes along the path from u0l (inluded) to uj (ex-luded).3. If l � 0, then reompute the size information of the nodes ul; ul�1; : : : ; u0. Otherwise, deletethe node u0 and make u1 the new root of the tree.5.4 AnalysisProposition 1 For any Oblivious Tree T storing n leaves, any i � n and value b, the algorithmsInsert(b; i; T) and Delete(i; T) have O(logn) expeted running time. (Probability omputed withrespet to the oin tosses of a single exeution of the algorithm.) Moreover, the probability for therunning time to deviate from its expeted value by a fator of � is exponentially small in � and inthe height of the tree.We will prove the Proposition for Insert(b; i; T). The analysis of the Delete algorithm isanalogous.The only ritial part of the Insert algorithm is the loop 2b. In order to bound the number oftimes that loop 2b is exeuted before the exit ondition w = 0 is satis�ed, we �rst need to provethe following fat.Lemma 1 During the exeution of loop 2b the variable w may assume only values in f0; 1; 2g.Proof: This is ertainly true at the �rst iteration, as w is initialized to 1. Now, w may be seteither to 0 at step 2(b)ii, or to max(t+w�d; 0) at step 2(b)iv. The only thing to be proved is thatat step 2(b)iv we always have t+ w � d � 2. We know that t 2 f1; 2; 3g by de�nition of ObliviousTree, d 2 f2; 3g and w 2 f1; 2g by indution hypothesis. Notie that step 2(b)iv is exeuted onlyif d 6= w. It follows that w � d � �1 and t+ w � d � t� 1 � 2.We an give a probabilisti estimate of the number of times that loop 2b is repeated beforew = 0.Lemma 2 At eah iteration of loop 2b there is at least 1=4 probability to set w = 0 (and thereforeexit the loop) within two iterations (the probability is over the random hoies d 2 f2; 3g at step2(b)i).Proof: We know from Lemma 1 that at eah iteration w equals either 1 or 2. If u0l is the last nodeat level l we set w = 0 at step 2(b)ii. If w = 2, then with probability 1=2 at step 2(b)i we hoosed = 2 and we set w = 0 at step 2(b)ii. If w = 1 we distinguish two ases. If t = 2, with probability1=2 we have d = 3 and we set w = t+ w � d = 0 at step 2(b)iv. If t = 3, with probability 1=2, we9

www.manaraa.com

have d = 2 and we set w = t+w � d = 2. At the next iteration we will set w = 0 with probability1=2.This already gives a polylogarithmi bound on the running time: the loop 2 is exeuted at mosth = O(logn) times. Eah time the inner loop 2b is exeuted an expeted onstant number of times,and eah step takes at most O(log n) time. The expeted total running time is O(log2 n).In fat, the running time of Insert an be bounded more tightly. Notie that eah node isvisited at most two times: the �rst time either at step 1 or at step 2(b)iii, and the seond timeeither at steps 2(b)iii and 2(b)v or at step 3. Therefore the total running time of the algorithm isproportional to the number of nodes visited.Let Tl the number of nodes visited at level l. fTlgl is a family of random variables whose exatvalue depends on both the input and the oin tosses of the algorithm. The nodes visited at level lan be divided into two groups: the nodes visited during iterations h� 1; h � 2; : : : ; l + 1, and thenodes visited during iteration l of the main loop.Using Lemma 2 the number of nodes visited at iteration l an be bounded by 2Xl where Xlis a random variable with geometri distribution of parameter 1=4 that depends only on the ointosses made during that iteration. The number of nodes visited during the previous iterations anbe bounded by Tl+1=2 + 1, beause the only nodes at level l visited at iteration j > l are anestorsof nodes visited at level j.Notie fXlgl is a family of totally independent random variables, de�ned on the oin tosses ofInsert, and independent from the input tree. The total running time is given byTime = hXi=1 Ti � hXi=1�1 + Ti+12 + 2Xi�Subtrating Time=2 from both sides and multiplying by 2 we get the upper boundTime � 2h+ 4X;where X = Phi=1Xi is the sum of h totally independent random variables, all with geometridistribution of parameter 1=4. In partiular, we have E[X℄ = 4h. Moreover, the probability for therunning time to deviate from its expeted value by more than � is exponentially small both in �and in h.This onludes the running time analysis. Let's now get to obliviousness. We already said thatthe only thing to be proved is that the update algorithms preserve the probability distributionde�ned by Create.Proposition 2 For all L = L[1℄L[2℄ � � �L[n℄, i � n and b the following equalities hold betweenprobability distributions:Insert(b; i;Create(L)) = Create(L[1℄; : : : ; L[i℄; b; L[i + 1℄; : : : ; L[n℄)Delete(i;Create(L)) = Create(L[1℄; : : : ; L[i� 1℄; L[i + 1℄; : : : ; L[n℄):Proof: (Sketh) We will prove only the �rst equality. The proof of the seond one is analogous.Consider how the nodes at level l are grouped by Insert. First of all notie that eah iteration lof the loop 2 modi�es only the topology of nodes at level l. Let ul+1 be the node inserted at levell + 1. The way the nodes up to ul+1 are grouped is not hanged by Insert. The nodes after ul+110

www.manaraa.com

Prob = 1/4A B C D E

Prob = 1/8A B C D E
Prob = 1/2A B C D E

Prob = 1/8A B C D E
Figure 4: Result of Create(ABCDE)are grouped exatly in the same way as algorithm Create would, but using new oin tosses. Thisde�nes the topology of the nodes up to ul. The nodes after ul are not modi�ed.Sine the oin tosses used during the exeution of the algorithms Insert and Create(L) areindependent, the �nal result is the same as we had run Create diretly on the modi�ed list ofleaves.For example if we run either Create(ABCDE) or Insert(B; 1;Create(ACDE)), we will getone of the trees in Figure 4 with the shown probabilities.6 A Private Inremental Signature ShemeIn this setion we de�ne in more detail the private signature problem and show how our datastruture an be used to solve it. First we reall the de�nition of digital signature sheme.De�nition 2 A digital signature sheme is a triple of probabilisti polynomial time algorithms(KGen;Sig;Vf). The key generation algorithm KGen takes as input a seurity parameter 1s (i.e.s expressed in unary) and outputs a seret key Sk and a publi key Pk. The signing algorithm Sigtakes as input the seret key Sk and a message m and outputs a digital signature SigSk(m). Theveri�ation algorithm Vf takes as input the veri�ation key Pk, a message m and a string �, andheks if � is a valid signature of m (i.e. VfPk(m;�) = 1 i� � is a possible output of SigSk(m)).The standard de�nition of seurity for a digital signature sheme (seurity against hosen mes-sage attak [7℄) is that no probabilisti polynomial time algorithm A, apable of obtaining from11

www.manaraa.com

Sig signatures of messages of its hoie, an produe a forgery with non-negligible probability, i.e.a valid signature for a message whih has not been previously signed by Sig.Let M be a set of text modi�ation operations (e.g. let M = finsert(b; i); delete(i)g, whereinsert(b; i) is the operation of inserting a new blok b at position i of a text and delete(i) is theoperation of deleting the ith blok).The following de�nitions are slightly di�erent, but equivalent to those given in [1℄, the maindi�erene being that in [1℄ InSig (see de�nition below) is de�ned as an interative Turing mahine,while here it is de�ned as a probabilisti algorithm.De�nition 3 A signature sheme (KGen;Sig;Vf) is inremental with respet to a set of text mod-i�ation operations M, i� there exists a probabilisti polynomial time algorithm InSig (the inre-mental signing algorithm) whih on input a pair of keys (Sk; Pk) generated by KGen, a digital sig-nature � of a doument D and an edit operation p, output a digital signature �0 = InSigSk;Pk(�; p)of the modi�ed doument p(D).Another di�erene between our de�nition and that in [1℄ is that the urrent doument is notinput to InSig. In fat, InSig annot read the whole doument beause otherwise it wouldn'tbe inremental. We assume that any information about the urrent doument required to performthe signature update operation is ontained in the desription of the edit operation p.Also the inremental signature � ould be too large to be read by InSig. In pratie, thesignature � is not passed to and returned from the inremental algorithm InSig. Rather, �resides in some form of memory support and is modi�ed in plae by InSig, whih reads onlya small portion of �. We made � an expliit parameter to InSig to emphasize that � residesexternally to InSig and a maliious user ould alter the inrementable signature � before issuinga ommand to InSig in the attempt of breaking the sheme.As pointed out in [1℄, in order to de�ne a notion of seurity for an inremental signature shemeit is neessary to refer to the douments by name. The reason is that forgery is de�ned as the abilityto produe a signature to a new doument. Therefore, we need to de�ne of whih douments weare requesting a signature when we all the inremental signing algorithm InSigSk;Pk(�; p).We assume that the output of the signing algorithms Sig and InSig onsists of a pair ofstrings (�; �). The �rst string is a doument identi�er, and the seond one is a digital signature ofthe doument identi�ed by �. We assoiate to eah doument identi�er � a virtual doument D�de�ned as follows:� If (�; �) was obtained by alling Sig(D), then D� = D.� If (�; �) was obtained by alling InSig((�0; � 0); p), then D� = p(D�0).D� is the doument that the signer believes he has signed when he outputs (�; �). Therefore,when we all the inremental algorithm InSig((�; �); p), this is onsidered as a request to signdoument p(D�).De�nition 4 A forger is an algorithm A with orale aess to SigSk and InSigSk;Pk, i.e., A anuse InSigSk;Pk and SigSk as blak boxes to obtain signatures InSigSk;Pk((�; �); p) and SigSk(D)of messages of its hoie. We stress that the inremental signatures (�; �) input to InSigSk;Pkneed not be valid signatures. We onsider A to have requested signatures of D if it alled algorithmSigSk(D) or InSigSk;Pk((�; �); p) and D = p(D�). We say that A produes a forgery if it outputsa valid signature for a new doument, i.e., a doument of whih it has not previously requested asignature to either InSigSk;Pk or SigSk. 12

www.manaraa.com

Seurity an now be de�ned following the standard paradigm.De�nition 5 A inremental digital signature sheme (KGen;Sig; InSig;Vf) is tamper proofseure i� for any probabilisti polynomial time algorithm A, with orale aess to InSigSk;Pk andSigSk, the probability that A produes a forgery is negligible as a funtion of the seurity parameters, i.e. it is less than 1=p(s) for any polynomial p and for all s large enough. The probability isomputed with respet to the hoie of (Sk; Pk) by KGen and the oin tosses of algorithms A, Sigand InSig.We now de�ne privay. Informally, an inremental signature sheme is private if an adversaryannot tell whether a signature has been obtained by running the signature algorithm from srathor by applying a sequene of edit operations.De�nition 6 Let (KGen;Sig; InSig;Vf) be an inremental signature sheme and let (Sk; Pk) apair of keys obtained by running KGen(1s). Consider an adversary A operating in two stages asfollows.� First stage: A is given the publi key Pk and outputs an initial doument D and a sequeneof text modi�ation operations p1; : : : ; pn.� Seond stage: we ip a random bit 2 f0; 1g and we give A an inremental digital signature ofD0 = pn(pn�1(: : : (p2(p1(D))))) obtained either by running SigSk(D0) if = 0, or by runningInSigSk;Pk(InSigSk;Pk(: : : InSigSk;Pk(SigSk(D); p1) : : : ; pn�1); pn) if = 1. A then outputsa bit b. A is suessful if b = .The inremental signature sheme ahieves perfet privay i� for any (omputationally un-bounded) adversary A, the probability that A guesses is 1=2 (the probability is taken over the ointosses of both the inremental signature sheme and the adversary A).A weaker notion of privay an be de�ned with respet to a omputationally bounded adversary.De�nition 7 Let (KGen;Sig; InSig;Vf) and A be as in De�nition 6. The inremental signaturesheme ahieve omputational privay if for any probabilisti polynomial time adversary A, theprobability that A guesses is negligible, i.e., for any polynomial p there exists an integer s0 suhthat for all s > s0 the probability of suess of A is less than 1=2+1=p(s). (The probability omputedover the random hoie of (Sk; Pk) 2 KGen(1s) and the oin tosses of SigSk, InSigSk;Pk and A.)We now de�ne an inremental signature sheme whih ahieves both tamper proof seurity andperfet privay. The sheme is essentially the same as the tree sheme desribed in [1℄, with 2-3Trees replaed by Oblivious Trees.Let (G;S; V) be a standard (non inremental) signature sheme. We assume that the signaturesheme (G;S; V) satis�es the following tehnial ondition: for any two messages m1 and m2, ifthere is a valid signature � of m1 whih is also a valid signature of m2, then any valid signaturesof m1 are valid signatures of m2.We de�ne an inremental digital signature sheme (KGen;Sig; InSig;Vf) on top of (G;S; V).The key generator KGen is G itself. The algorithms Sig, InSig and Vf use SSk and VPk assubroutines with the keys (Sk; Pk) generated by KGen.Algorithm Sig on input key Sk and doument D, produes a pair (�; �) where � is a binarystring and � is an Oblivious Tree with a label label(n) attahed to eah node n. The string �13

www.manaraa.com

is hosen at random and it is long enough to make the probability of a ollision (i.e., that twoexeutions of the algorithm generate the same string) negligible. Alternatively, InSig and Sigan be de�ned as an interative mahine with an internal ounter � whih is inremented at eahall.If n is a leaf node the label is a digital signature of a blok of text. If n is an internal nodelabel(n) onsists of a digital signature of the labels of the hildren of n onatenated with size(n)The tree is obtained by �rst signing eah blok of the doument D to get �i = SigSk(D[i℄). Thenthe algorithm Create(�1; : : : ; �n) (see Setion 5) is run modi�ed as follows. When a new internalnode n is reated, the label label(n) = SigSk(l1; l2; l3)�size(n) is attahed to the node, where l1; l2; l3are the labels of the hildren of n (if n has less then three hildren take li = � for i > deg(n)). Thelabel of the root has a speial form. If n is the root, then label(n) = SigSk(l1; l2; l3; �) � size(n).The veri�ation algorithm Vf works in the obvious way. It takes as input key Pk, doument Dand a signature (�; �), and heks that all labels at the nodes of � are valid. A label label(n) = � �zis valid i� z is the sum of the sizes of the hildren of n and V (msg; �) = 1 where msg is theonatenation of the labels of the hildren of n and the doument identi�er � if n is the root node.We now de�ne the inremental signing algorithm InSig. On input (�; �) and insert(b; i),InSig generates a new doument identi�er �0, signs the new blok SigSk(b) = �, and runs thealgorithm Insert(�; i; �) modi�ed as follows. Eah time a new node is visited, hek if its label isvalid, and when a node is modi�ed reompute the label of its parent.A more detailed desription of the modi�ations to be made to algorithm Insert now follows.� At step 1 use VfPk to hek that the labels of the nodesu0; : : : ; ul�1are valid. In partiular the root of � must ontain a valid digital signature of (l1; l2; l3; �).� At the end of step 2(b)iii hek that the labels of uj+1; : : : ; ul are valid.� At steps 2(b)v reompute the labels of the nodes u0l; : : : ; uj as well as their sizes.� At step 3 reompute the labels of the nodes ul; : : : ; u0. The new label of the root node willontain a signature of the string (l1; l2; l3; �0) where �0 is the new doument identi�er.Let � 0 be the new tree. The output of InSig is (�0; � 0).Edit operations delete(i) are treated analogously.The above sheme meets all three requirements of being tamper proof seure, eÆient andprivate.Theorem 1 If the signature sheme (G;S; V) is seure under hosen message attak, then theinremental signature sheme (KGen; Sig; InSig;Vf) desribed above is tamper proof seure.The proof of this theorem is essentially the same as that in [1℄ and is skethed in Appendix A.Theorem 2 For any update operations, the expeted running time of InSig is O(log n).Proof: The running time of a doument modi�ation operation is proportional to the running timeof the orresponding insert or delete tree operation. The theorem follows from Proposition 1.
14

www.manaraa.com

Theorem 3 The inremental digital signature sheme InSig de�ned above ahieves perfet pri-vay.Proof: Let A be an adversary as desribed in De�nition 6 and let D and p1; p2; : : : ; pn be theinitial doument and the sequene of edit operations it outputs. A is given one of the two followingsignatures �0 = Sig(pn(: : : (p2(p1(D)))))�1 = InSig(: : : InSig(Sig(D); p1) : : : ; pn):Let's say, A reeives � where is hosen at random from f0; 1g. We laim that the randomvariables �0 and �1 have idential probability distribution, and therefore � and are independent.For = 0; 1, � onsists of a pair (�; �) where � is a randomly hosen binary string, and � isa labeled Oblivious Tree onstruted either by running Sig or by running InSig. Clearly �0 and�1 have idential distribution. As regard the trees, it follows from Proposition 2 that the topologyof �0 and �1 is distributed aording to the same probability, independently from the sequene ofoperations used to build either tree. Finally, the label of eah node in the trees is omputed runningthe signing algorithm SSk with independent oin tosses. So, �0 and �1 have the same probabilitydistribution.This proves that � and are independent. Let 0 the �nal output of A. Sine 0 is a funtionof � and the oin tosses of A only, it is independent from and the probability that = 0 is 1=2.
7 DisussionWe have de�ned eÆient algorithms to insert and delete nodes in trees, satisfying the property thatif two sequenes of operations produe trees that have the same set of leaves, than the exeutionof the algorithms orresponding to the two sequenes of operations produe idential probabilitydistributions. We all the resulting data struture Oblivious Tree (supporting insertion and deletionoperations).An eÆient inremental digital signature sheme is de�ned using the Oblivious Tree data stru-ture. The inremental signature sheme ahieves tamper proof seurity and perfet privay, andthus solves an open problem raised in [1℄.Perfet privay (see De�nition 6) is de�ned with respet to a omputationally unbounded ad-versary whih hooses the sequene of edit operations to issue to the inremental signing algorithm,but whih only sees the �nal result of the operations. An interesting question whih we leave open iswhether privay an be ahieved with respet to an adversary (possibly omputationally bounded,see De�nition 7), whih also gets partial information on the history of the data struture. As asenario in whih suh a stronger notion of privay is required onsider the following: three signedopy of (di�erent versions of) a doument are sent to Alie, Bob and Charly. If a private inremen-tal signing algorithm has been used to produe the three digital signatures, no single signature giveany information about di�erent versions of the signed doument. However, Alie and Charly ouldollaborate and be able to get some information about the doument sent to Bob by omparingthe signatures they reeived.Oblivious algorithms for other tree operations, suh as split and merge of Oblivious Trees,an be de�ned following essentially the same ideas used in the de�nition of the insert and deletealgorithms. For example, two Oblivious Trees an be merged by onatenating their nodes level by15

www.manaraa.com

level and ipping oins to hoose again the degree of the nodes near the rightmost path of the �rsttree. An inremental signature sheme whih supports ut and paste text modi�ation operationsan be easily de�ned using split and merge of Oblivious Trees, essentially in the same way we didhere for insert and delete operations.It is lear that the de�nition of obliviousness for searh trees an be generalized to arbitrarydata strutures. An attempt to give a general de�nition of oblivious data struture is in AppendixB. We believe that the appliability of the notion of oblivious data struture extends beyond thepartiular problem solved here (privay of inremental digital signatures), in partiular to the areaof ryptography.8 AknowledgementsI would like to thank Sha� Goldwasser for suggesting the problem and for her help and enour-agement to write this abstrat. Thanks also to Oded Goldreih, Ron Rivest and Mar Fishlin foruseful disussions and omments.Referenes[1℄ M. Bellare, O. Goldreih and S. Goldwasser, \Inremental Cryptography and Appliation toVirus Protetion", Pro. of the 27th Ann. ACM Symp. on the Theory of Computing. 1995, pp45-56.[2℄ M. Bellare, O. Goldreih and S. Goldwasser, \Inremental Cryptography: The ase of Hashingand Signing", Advanes in ryptology. Proeedings of the 14th Ann. International Conferene.pp 216-233. 1994 Springer-Verlag, LNCS 839.[3℄ W. Pugh, \Skip Lists: A Probabilisti Alternative to Balaned Trees", Univ. of Maryland,Teh. Report CS-TR-2190. 1989.[4℄ C. R. Aragon and R. G. Seidel, \Randomized Searh Trees", Pro. of the 30th Ann. IEEESymp. on Foundations of Computer Siene. 1983. pp 540{545.[5℄ A. Aho, J. Hoproft and J. Ullman, \The design and analysis of omputer algorithms", AddisonWesley, 1974.[6℄ M. Wirsing, \Algebrai Spei�ation", in Handbook of Theoretial Computer Siene. Editedby J. van Leeuwen. Elsevier 1990. Vol. B, Chapter 13, pp 677-788.[7℄ S. Goldwasser, S. Miali and R. L. Rivest, \A Digital Signature Sheme Seure Against Adap-tive Chosen-Message Attaks", SIAM Journal of Computing, 17(2), 1988, pp. 281{308.[8℄ B. P�tzmann and M. Waidner, \How to Break and Repair a Provably Seure UntraeablePayment System", Advanes in Cryptology: Proeedings of the 11th Ann. International Con-ferene. 1991, LNCS 576, Springer-Verlag. pp. 338{350.[9℄ A. Andersson and T. Ottmann, \Faster Uniquely Represented Ditionaries", Pro. of the 38thAnn. IEEE Symp. on Foundations of Computer Siene. 1991. pp.642{649.
16

www.manaraa.com

A Proof of Seurity (Sketh)Assume for ontradition that the inremental digital signature sheme(KGen;Sig; InSig;Vf)is not tamper proof seure, i.e., there exists a forger algorithm F whih sueeds with probabilitygreater than �. We will show that the standard digital signature sheme (G;S; V) is not seureagainsts hosen message attak, ontraditing our assumption.For simpliity we assume that the doument identi�ers � produed by Sig and InSig neverrepeat. This is true if the signing algorithms are de�ned as an interative mahine that keepsa ounter � whih is inremented at every all. If Sig and InSig are state-free probabilistialgorithms, the length of � is large enough to make the probability of a repetition negligible.We use F to de�ne an algorithm A whih forges S signatures. Algorithm A is given a publikey Pk and has orale aess to SSk. A simulates F and answers its queries as follows.When F ask for SigSk(D), A simulates Sig on input D using the orale SSk to ompute thelabels of the nodes, and aswers F with the result of Sig.A maintains a list M of the pairs message-signature obtained from orale SSk. Before askingthe orale for a signature of message m, A �rst heks if the message m is not in the list M , butfor some signature � in M , VPk(m;�) = 1. In suh (m;�) is a forgery and A stop with output(m;�). Note that if this never happen, then all messages signed by the orale have distint validsignatures.When F ask for InSigSk;Pk((�; �); p), A �rst heks if � ontains a valid signature for somemessage not in M , i.e., a forgery. If so, A outputs it and stops. Otherwise A simulates InSig oninput ((�; �); p) using the publi key Pk to verify the labels of the nodes and using orale SSk tosign the modi�ed nodes, and answers F with the result of InSig.Eventually, F outputs an inremental signature (�; �) of some new doument D. A heks if �ontains a valid signature for some message not in M and outputs it.Clearly A is polynomial time. We laim that A output a forgery with probability at least �.We do this showing that if A does not output a forgery, then also F didn't sueed in forging theinremental signature sheme.Assume that A does not output a forgery. A run the simulation of F till the end. Let (�; �)the �nal output of F . If (�; �) is not valid, then also F failed. So, assume that all labels in � arevalid, but all messages signed in � have already been signed by the orale SSk, i.e., they are in M .In partiular, the root of � ontains a signature of (l1; l2; l3; �) and this message has been signedto answer a query to F . Sine this message has a speial form, at some point F must have madea query whose answer was (�; � 0). We will prove that D = D�, where D� is the virtual doumentassoiated to the doument identi�er �, ontraditing the hypothesis that D was a new message.For eah virtual doument D� we de�ne a virtual tree ��. The de�nition mimis the one of avirtual doument.� If (�; �) was output by Sig(D), then the virtual tree of D� is � itself.� If (�; �) was output by algorithm InSig((�0; � 0); p) then the virtual tree of D� onsists of atree �� in whih the new (or modi�ed) nodes are the same as in � and all other nodes are asin the orresponding subtrees of ��0 .The following important properties of virtual trees an be proved by indution on the de�nitionof virtual douments and virtual trees. 17

www.manaraa.com

Lemma 3 For any doument identi�er �, all labels of the virtual tree �� have been reated by thesystem.Lemma 4 For any doument identi�er �, (�; ��) is a valid signature of D�, i.e.,VfPk((�; ��);D�) = 1:So, (�; ��) is a valid signature of D� and (�; �) is a valid signature of D. Moreover, all messagessigned either in �� or in � , have been signed by the system, and therefore are in M . Sine allmessages inM have distint signatures, and the roots of the two trees � and �� ontains signaturesof the same message, then the two trees � and �� are the same at all nodes, as it an easily provedby indution on the level of the nodes. In partiular, � and �� are signatures of the same doumentD = D�.B General De�nition of Oblivious Data StrutureIn order to de�ne the notion of oblivious data struture, we �rst need to de�ne what a data strutureis. A ommon approah to the de�nition of data strutures is that based on many-sorted algebras.For a general introdution to this topi the reader is referred to [6℄. Here we will reall the baside�nitions restrited to the ase of a single sort to simplify the notation. The extension to themany-sorted ase is straightforward.A data struture an be de�ned as a set of objets whih an be manipulated by a given set ofoperations �. More formally, the syntax of a data struture is spei�ed by a signature, i.e. a set �of funtion symbols with an assoiated arity funtion �: � ! IN . The meaning of the symbols in� is spei�ed by a �-algebra. A �-algebra A is a pair (A;�A) where A is a set, alled the arrier,and �A ontains a funtion fA:An ! A for eah funtion symbol f 2 � of arity �(f) = n.Compound expressions, alled terms, an be built up from the symbols in �. For exampleif a, b and f are funtion symbols with arity �(a) = �(b) = 0 (i.e. a and b are onstants) and�(f) = 2 (i.e. f is a binary funtion) we an build the term f(a; b). Given a �-algebra A = (A;�A)we assoiate to eah �-term t an element tA 2 A de�ned by interpreting the symbols in t as theorresponding funtions in �A. A ongruene over A is an equivalene relation over A suh thatfor any f 2 � with �(f) = n and for any a1; : : : ; an; b1; : : : ; bn 2 A suh that ai � bi for all i's, wehave fA(a1; : : : ; an) � fA(b1; : : : ; bn):For any a 2 A, the equivalene lass of a is de�ned by [a℄ = fb j b � ag.In order to de�ne oblivious data struture, we need to extend the above notions of �-algebraand �-ongruene to allow the funtion symbols to be interpreted as probabilisti algorithms.A probabilisti �-algebra is a pair (A;�A) where A is a set, alled the arrier, and �A is aset of funtions. For eah funtion symbol f 2 � of arity �(f) = n, �A ontains a randomizedalgorithm fA from An to A. A ongruene over A is an equivalene relation over A suh that forall f 2 � with �(f) = n and for any a1; : : : ; an; b1; : : : ; bn 2 A suh that ai � bi for all i's, wehave fA(a1; : : : ; an) � fA(b1; : : : ; bn) for all possible random hoies made during the omputationof fA(a1; : : : ; an) and fA(b1; : : : ; bn). In partiular, [fA(a1; : : : ; an)℄ does not depend on the randomhoies of fA.Given probability distribution D, we denote with [D℄ the set of points with non zero probability.De�nition 8 Let A = (A;�A) be a probabilisti data struture and let � be a ongruene relationover A. 18

www.manaraa.com

We say that A is oblivious with respet to � if for any two terms t1 and t2 if t1A � t2A then t1Aand t2A de�ne the same probability distribution.For example Oblivious Trees are oblivious with respet to the equivalene relation T1 � T2 i�T1 and T2 have the same sequene of leaves.The way obliviousness has been proved for our data struture in Setion 5 suggests an alternativeharaterization of oblivious data strutures.Theorem 4 Let A = (A;�A) be a probabilisti data struture and let � be a ongruene relationover A.A is oblivious with respet to � i� there exists a family of probability distributions �C , one foreah equivalene lass C 2 f[a℄ j a 2 Ag, suh that and for all operation f 2 � of arity n, andfor any n-tuple (x1; : : : ; xn) 2 An the probability distribution de�ned by fA(�[x1℄; : : : ; �[xn℄)) is thesame as �[fA(x1;:::;xn)℄.In the Oblivious Tree ase the probability distribution �L is de�ned by Create(L).

19

